Textbook Information Math 207 GH – Calculus and Analytic Geometry I Fall 2017

Lecture Notes, Worksheets

Most topics covered in the class will be presented via handouts. These will be available at the <u>class's web site</u>, as pdf files. All students must monitor the class's web site for handouts and announcements.

Textbook

The class's textbook policy is as follows. **Students must have a textbook but it does NOT have to be the official textbook designated for this course.** This policy is intended to lower textbook costs. Usually students can purchase a textbook for the course under \$40. Students are welcome to use any previous edition at a much lower cost. Students also may rent or purchase e-versions of a calculus book.

The Mathematics Department selected Calculus 7E by Hughes-Hallett. Due to price considerations, the use of this book will not be mandatory in this class.

As this is an excellent text, students are encouraged to buy a previous edition of this textbook. Students also may use other calculus books. However, it is essential that students use a text that is labeled **early transcendentals**. (That is what the E stands for in 7E.) Other, excellent texts include any early transcendental version (any edition) of calculus textbooks written by:

Soo T. Tan George B Thomas Ron Larson Jerrold E. Marsden James Stewart William Briggs

Open source textbooks are also available. Open source means free pdf download, in this case, here: <u>https://openstax.org/subjects/math</u>. Students are encouraged to download and use the open source calculus textbooks.

Online Homework

Homework will be assigned on MyOpenMath, an open source online platform. The use of MyOpenMath is completely free, and students can register at <u>https://www.myopenmath.com</u>. The use of MyOpenMath will be mandatory in the class.

Contents of Textbook

1. Foundations for Calculus: Functions and Limits

- 1.1 Functions and Change
- 1.2 Exponential Functions
- 1.3 New Functions from Old
- 1.4 Logarithmic Functions
- 1.5 Trigonometric Functions
- 1.6 Powers, Polynomials, and Rational Functions
- 1.7 Introduction to Limits and Continuity
- 1.8 Extending the Idea of a Limit
- 1.9 Further Limit Calculations Using Algebra

2. Key Concept: The Derivative

- 2.1 How Do We Measure Speed?
- 2.2 The Derivative at a Point
- 2.3 The Derivative Function
- 2.4 Interpretations of the Derivative
- 2.5 The Second Derivative
- 2.6 Differentiability

3. Short-Cuts to Differentiation

- 3.1 Powers and Polynomials
- 3.2 The Exponential Function
- 3.3 The Product and Quotient Rules
- 3.4 The Chain Rule
- 3.5 The Trigonometric Functions
- 3.6 The Chain Rule and Inverse Functions
- 3.7 Implicit Functions
- 3.8 Hyperbolic Functions
- 3.9 Linear Approximation and the Derivative
- 3.10 Theorems About Differentiable Functions

4. Using the Derivative

- 4.1 Using First and Second Derivatives
- 4.2 Optimization
- 4.3 Optimization and Modeling
- 4.4 Families of Functions and Modeling
- 4.5 Applications to Marginality
- 4.6 Rates and Related Rates
- 4.7 L'Hopital's Rule, Growth, and Dominance
- 4.8 Parametric Equations

5. Key Concept: The Definite Integral

- 5.1 How Do We Measure Distance Traveled?
- 5.2 The Definite Integral
- 5.3 The Fundamental Theorem and Interpretations
- 5.4 Theorems About Definite Integrals

6. Constructing Antiderivatives

- 6.1 Antiderivatives Graphically and Numerically
- 6.2 Constructing Antiderivatives Analytically
- 6.3 Differential Equations and Motion
- 6.4 Second Fundamental Theorem of Calculus

7. Integration

- 7.1 Integration by Substitution
- 7.2 Integration by Parts
- 7.3 Tables of Integrals
- 7.4 Algebraic Methods for Definite Integrals
- 7.5 Numberical Methods for Definite Integrals
- 7.6 Improper Integrals
- 7.7 Comparison of Improper Integrals

Textbook Information – Math 207 GH – Fall 2017

8. Using the Definitive Integral

- 8.1 Areas and Volumes
- 8.2 Applications to Geometry
- 8.3 Area and Arc Length in Polar Coordinates
- 8.4 Density and Center of Mass
- 8.5 Applications to Physics
- 8.6 Applications to Economics
- 8.7 Distribution Functions
- 8.8 Probability, Mean, and Median

9. Sequences and Series

- 9.1 Sequences
- 9.2 Geometric Series
- 9.3 Convergence of Series
- 9.4 Tests for Convergence
- 9.5 Power Series and Interval of Convergence

10. Approximating Functions Using Series

- 10.1 Taylor Polynomials
- 10.2 Taylor Series
- 10.3 Finding and Using Taylor Series
- 10.4 The Error in Taylor Polynomial Approximations
- 10.5 Fourier Series

11. Differential Equations

- 11.1 What is a Differential Equation?
- 11.2 Slope Fields
- 11.3 Euler's Method
- 11.4 Separation of Variables
- 11.5 Growth and Decay
- 11.6 Applications and Modeling
- 11.7 The Logistic Model
- 11.8 Systems of Differential Equations
- 11.9 Analyzing the Phase Plane
- 11.10 Second-Order Differential Equations: Oscillations
- 11.11 Linear Second-Order Differential Equations

14. Differentiating Functions of Several Variables

14.4 Gradients and Directional Derivatives in the Plane

page 2

14.5 Gradients and Directional Derivatives in Space

14.2 Computing Partial Derivatives Algebraically

14.3 Local Linearity and the Differential

14.7 Second-Order Partial Derivatives

12. Functions of Several Variables

- 12.1 Functions of Two Variables
- 12.2 Graphs and Surfaces
- 12.3 Contour Diagrams
- 12.4 Linear Functions
- 12.5 Functions of Three Variables
- 12.6 Limits and Continuity

13. A Fundamental Tool: Vectors

- 13.1 Displacement Vectors
- 13.2 Vectors in General

13.4 The Cross Product

14.1 The Partial Derivative

13.3 The Dot Product

14.6 The Chain Rule

14.8 Differentiability

Last revised: August 7, 2017

15. Optimization: Local and Global Extreme

15.1 Critical Points: Local Extreme and Saddle Points 15.2 Optimization

15.3 Constrained Optimization: Lagrange Multipliers

16. Integrating Functions of Several Variables

16.1 The Definite Integral of a Function of Two Variables

16.2 Iterated Integrals

16.3 Triple Integrals

16.4 Double Integrals in Polar Coordinates

- 16.5 Integrals in Cylindrical and Spherical Coordinates
- 16.6 Applications of Integration to Probability

17. Parameterization and Vector Fields

17.1 Parameterized Curves

17.2 Motion, Velocity, and Acceleration

17.3 Vector Fields

17.4 The Flow of a Vector Field

18. Line Integrals

18.1 The Idea of a Line Integral

18.2 Computing Line Integrals Over Parameterized Curves

18.3 Gradient Fields and Path-Independent Fields

18.4 Path-Dependent Vector Fields and Green's Theorem

19. Flux Integrals and Divergence

- 19.1 The Idea of a Flux Integral
- 19.2 Flux Integrals for Graphs, Cylinders, and Spheres
- 19.3 The Divergence of a Vector Fields
- 19.4 The Divergence Theorem

20. The Curl and Stokes' Theorem

20.1 The Curl of a Vector Fields

20.2 Stokes' Theorem

20.3 The Three Fundamental Theorems

21. Parameters, Coordinates, and Integrals

- 21.1 Coordinates and Parameterized Surfaces
- 21.2 Change of Coordinates in a Multiple Integral
- 21.3 Flux Integrals Over Parameterized Surfaces