Linear expression such as 2x + 1 have no smallest or greatest values. Substituting greater and greater positive numbers (as x) into 2x + 1 produces greater and greater values. Similarly, substituting large negative numbers (as x) into 2x + 1 produces negative values with increasing absolute value.

Quadratic expressions are fundamentally different, as no square of any real number is negative. Consequently, most quadratic expressions have a smallest possible value: zero.

Example 1. What is the smallest value of each of the following quadratic expressions?

- a) x^2
- b) $(x-4)^2$ c) $(2x+1)^2$ d) $(x+7)^2$

Solution: a) No real number can have a negative square. Consequently, if x^2 could take the value zero, that would be the smallest value. That is possible, when we square x = 0. Thus, the lowest value of x^2 is zero, when x is zero.

- b) Recall that $(x-4)^2$ is a complete square; a difference squared. No matter what the value of x is, x-4 is a real number and so it can NOT have a negative square. Consequently, if $(x-4)^2$ could take the value zero, that would be the smallest value. That is possible, but only when we square zero. Thus, the lowest value of $(x-4)^2$ is zero, when x-4 is zero, that is, when x=4. (Just solve the linear equation x-4=0). In short: the lowest value of $(x-4)^2$ is zero, when x=4.
- c) Recall that $(2x+1)^2$ is a square, thus no value for x will ever result in a negative value. Consequently, if $(2x+1)^2$ could take the value zero, that would be the smallest value. That is possible, but only when we square zero. Thus, the lowest value of $(2x+1)^2$ is zero, when 2x+1=0. We solve the linear equation 2x+1=0 for x and obtain $x=-\frac{1}{2}$. So, the lowest value of $(2x+1)^2$ is zero, when $x=-\frac{1}{2}$.
- d) Since $(x+7)^2$ is a square, no value for x will ever result in a negative value. Consequently, if $(x+7)^2$ could take the value zero, that would be the smallest value. That is possible, but only when we square zero. Thus, the lowest value of $(x+7)^2$ is zero, when x+7=0. We solve the linear equation x+7=0 for x and obtain x = -7. So, the lowest value of $(x + 7)^2$ is zero, when x = -7.

Example 2. Find the smallest value of each of the following quadratic expressions.

- a) $x^2 + 25$ b) $(x-4)^2 1$ c) $(2x+1)^2 + 12$ d) $(x+7)^2 100$

Solution: First imagine a room where some people gathered. Everyone empties their vallets and pockets and count all their cash and then compare. As it turns out, Mr. X has the least amount of money on them, only \$1.50. Then another hour later, everyone in the room receives \$20. Who has the least amount of money now? The answer is clearly Mr. X, this time with \$21.50.

- a) Consider the expression $x^2 + 25$. Recall that the lowest value of x^2 is zero, when x is zero. Then the lowest value of $x^2 + 25$ is 25, when x is zero. (Imagine that the 'poorest' person in the room was Ms. Y, with no money on her. If then everyone in the room receives \$25, she would still be the one with the smallest amount of money, exactly \$20.)
- b) Consider now the expression $(x-4)^2-1$. The lowest value of $(x-4)^2$ is zero, when x=4. Then the lowest value of $(x-4)^2 - 1$ is -1, when x = 4.

© Hidegkuti, 2017 Last revised: July 2, 2017

- c) Consider now the expression $(2x+1)^2 + 12$. Because it is a square, the lowest value of $(2x+1)^2$ is zero, when $x=-\frac{1}{2}$. Then the lowest value of $(2x+1)^2+12$ is 12, when $x=-\frac{1}{2}$.
- d) Consider now the expression $(x+7)^2 100$. Because it is a square, the lowest value of $(x+7)^2$ is zero, when x = -7. Then the lowest value of $(x+1)^2 - 100$ is -100, when x = -7.

Example 3. Find the smallest value of each of the following quadratic expressions.

a)
$$x^2 + 2x - 5$$
 b) $x^2 - 8x + 15$ c) $x^2 - 12x$ d) $x^2 - 100$

b)
$$x^2 - 8x + 15$$

c)
$$x^2 - 12x$$

d)
$$x^2 - 100$$

Solution: a) We will apply the same ideas, but first we need to transform this expression into a more suitable form. For that, We simply complete the square. Half of the linear coefficient is 1, so our suitable complete square is $(x+1)^2$.

$$E = x^2 + 2x - 5$$
 helper line: $(x+1)^2 = x^2 + 2x + 1$
= $x^2 + 2x + 1 - 1 - 5$ so we smuggle in 1
= $(x+1)^2 - 6$

This form of a quadratic expression is often called **the standard form**. Once we brought the expression to the standard form, we can easily determine the smallest value. The smallest value of $(x+1)^2 - 6$ is -6, when x = -1.

b) Consider the expression $x^2 - 8x + 15$. We complete the square to bring the expression to its standard form.

$$E = x^2 - 8x + 15$$
 helper line: $(x - 4)^2 = x^2 - 8x + 16$
= $x^2 - 8x + 16 - 16 + 15$ so we smuggle in 16
= $(x - 4)^2 - 1$

Once we brought the expression to the standard form, we can easily determine the smallest value. The smallest value of $(x-4)^2 - 1$ is -1, when x = 4.

c) Consider the expression $x^2 - 12x$. We complete the square to bring the expression to its standard form.

the expression
$$x^2 - 12x$$
. We complete the square to bring the expression to it
$$E = x^2 - 12x$$
helper line: $(x - 6)^2 = x^2 - 12x + 36$

$$= \underbrace{x^2 - 12x + 36}_{= (x - 6)^2 - 36}$$
so we smuggle in 36
$$= (x - 6)^2 - 36$$

The smallest value of $x^2 - 12x$ is -36, when x = 6.

d) Consider the expression $x^2 - 100$. We do not complete the square as the expression is already in its standard form. If it helps, we can think of $x^2 - 100$ as $(x - 0)^2 - 100$. Either way, the smallest value of $x^2 - 100$ is -100, when x = 0.

Completing the square is not just a factoring technique. It is really our only way (at this point) to determine the smallest value that the expression takes. Completing the square is a way to understand quadratic expressions.

Last revised: July 2, 2017 © Hidegkuti, 2017

Practice Problems

Find the smallest value of each of the following expressions.

1.
$$x^2 - 4x + 7$$
 3. $x^2 - 2x$

3.
$$x^2 - 2x$$

5.
$$x^2 - 100x + 60$$
 7. $x^2 - 16$ 9. $x^2 - 4x + 4$

7.
$$x^2 - 16$$

9.
$$x^2 - 4x + 4$$

2.
$$x^2 + 10x + 14$$

4.
$$x^2 + 6x + 42$$

6.
$$x^2 + 8x + 20$$

8.
$$x^2 - 16x + 4$$

2.
$$x^2 + 10x + 14$$
 4. $x^2 + 6x + 42$ 6. $x^2 + 8x + 20$ 8. $x^2 - 16x + 4$ 10. $x^2 + 18x + 81$

Enrichment

- 1. Not all squares produce zero as their smallest value. Consider the expression $(x^2 + 3)^2$. What is the smallest value of this expression? How about $(x^2 + 3)^2 - 1$? And $x^4 + 10x^2 + 14$?
- 2. Until now, the quadratic expressions we saw all had a leading coefficient of 1. How is our argument modified with different leading coefficients? Discuss the smallest value of each of the given expressions.

a)
$$3(x-5)^2+8$$

b)
$$-2(x+1)^2-49$$

a)
$$3(x-5)^2+8$$
 b) $-2(x+1)^2-49$ c) $5((x+4)^2-25)$

Answers

Practice Problems

 $1. \ 3 \ \ 2. \ -11 \ \ 3. \ -1 \ \ 4. \ 33 \ \ 5. \ -40 \ \ 6. \ 4 \ \ 7. \ -16 \ \ 8. \ -60 \ \ \ 9. \ 0 \ \ 10. \ 0$

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or comments to mhidegkuti@ccc.edu.

© Hidegkuti, 2017

Last revised: July 2, 2017