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d
1. o (sinz) = cosz
2. . (cosx) = —sinx

&

T

d
. (tanx) = sec?z = tan?z + 1

d
4. — (cotz) = —csc?x = —cot?x — 1
dx
sinx
5. ——(secx) = —— =secxtanz
dx cos? x
coS X
6. — (cscx) = ———— = —cscxcotx
dx sin”
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Proofs
Th Land 20 L (sinz) = d L (cosz) = —si
eorems all . da’; SINT) = COST an dm COSXx) = ST
Claim 1.) lim 2% =1
z—0 X

Proof: This theorem and the next one are necessary for differentiating sinx and cosz. Recall a theorem: Let
r be the radius of a circle. If o is measured in radians, then the area of a sector with a central angle of « is
2
ar S

Agector = - (Notation: AB will denote the length of line segment AB.)

Let x be a very small positive angle, measured in radians, drawn into a unit circle as shown on the picture below.
Let B be the point where the unit circle intersects the ray determined by x. We then draw a tangent line to the
circle at point B. Let A be the point where the tangent line intersects the x—axis. We also draw a vertical line
through B. Let D be the point where this vertical line intersects the x—axis. Finally, let us denote by E the
point with coordinates (0, 1).

The proof will be based on the following fact: because they include each other, the following three areas can be
easily compared:

Area of triangle CDB < Area of sector CEB < Area of triangle ABC

Area of triangle CDB: the horizontal side, CD = cosz and the vertical side, DB = sinz. Since this is a right

. . 1.
triangle, the area is: Acpp = 3 sin z cos .

12
Area of sector CEB: Agector = 7&0 = g

Area of triangle ABC': there is a right angle at point B because the tangent line drawn to a circle is perpendicular

I _
to the radius drawn to the point of tangency. So the area is Aapc = §AB - BC. Clearly BC =1. To compute

_ AB _
AB, in triangle ABC, tanx = =D and so AB = tanz.

1 tanx sinx
A f triangle ABC: — (1) (t = .
rea of triangle 5 (1) (tanx) 5 ' 5oosa

Area of triangle CDB < Area of sector CEB < Area of triangle ABC

So now

translates to .
sinx

1 . < T <
—sinzcosz < —
2 — 2 7 2cosz
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sinx sin
Let us divide all three sides by —3 Because z is small and positive,

reverse the inequality signs.
1

COS T

<

cost < — <
sinx

1
Then both cosz and
CcoS T

the quantity locked in between those two must also approach 1.

Suppose now that x approaches zero.

is positive and so we do not need to

x
approach 1. By the sandwich principle, —,
S

1 T

T 1
cosr < - <
sinx COS T
!
1 1
.. . sinx
If — approaches 1, so is its reciprocal,
sinx
.. ) . sinz o
So far, we have proven the statement for positive values of x, that is, hm+ = 1. A similar argument works
x—0 xX
for negative values of x.
. . coszr—1
Claim 2.) lim ——— =0
z—0 xT
Proof:
cosx — 1 . cosx —1 . cosr—1 cosx—+1 . cosx — —(1—005235)
m——— = lim — -1 =1lim . =lim———=lm ———+~
z—0 T z—0 X z—0 x cosz + 1 z—0z (cosz+1) a2—0 z(cosz+1)
. —sin?z sinx —sinz sinxz . —sinz
= lim ——— = lim . = lim lim ——=1-0=0
a—0x (cosz+1) 20 x cosz+1 =2-0 x 2—-0cosz+1
d . .
We are now ready to prove that T (sinz) = cosz and o (cosz) = —sinz
T T
Proof:
d . . sin(z+h)—sinz sinxcosh + cosxsinh —sinz
— (sinz) = lim = lim
dx h—0 h h—0 h
. sinzcosh —sinx cosxsinh . sinz (cosh —1) . sin h
= lim + = lim + lim cos x———
h—0 h h h—0 h h—0 h
. . cosh—1 . sinh .
= ginxglim ——— +coszlim —— =sinz-0+cosxz -1 =cosx
h—0 h h—0
d cos (x + h) — cosx coszcosh —sinxsinh — cosx
— (cosz) = lim = lim
dx h—0 h h—0 h
. cosrcosh —cosx sinzsinh . cosx(cosh—1) . sinxsinh
= lim — = lim — lim ——
h—0 h h h—0 h h—0 h
. cosh—1 . . sinh . .
= cosz lim —— —sinz lim =cosz-0—sinx-1=—sinx
h—0 h h—0
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d 2 2 d 2 2
Theorem 3 and 4: . (tanz) = sec®z = tan®z + 1 and . (cotx) = —csc®x = —cot® x — 1.

x x

_ sin x .
Proof: We write tanx = and apply the quotient rule.
oS T
d . d .
. —sinzx | cosz — [ —cosz | sinx ) _ .

d (sinz dz dz coszcosw — (—sinz)sinz  cos?x +sin®z 1 9
el — = = = =sec’x
dx \ cosz cos? cos? cos? cos?

We will now prove ——— = tan? z+1, which is a very important connection. Looking at the previous computation,
cos? x
1 cos?x +sin?x  cos’z  sin’z 9
5 = 5 = 5 5 =1+tan"x
cos? x cos? x cos’x  cos’w

d
The proof ford— (cotx) = —cot?x — 1 = — csc?
T

x is very similar. We apply the quotient rule.

d . .
—cosz | sinx —cosx ([ —sinz
d d (cosx <dx > <dx ) —sinzsinz — cosz (cosz)  —sin?z — cos?x
— (cot z) —( ): ) = 2 - in2
dx dx \sinz sin“ x sin® x sin“ x
1 2
= ——5 - =-—cscx
sin® x
Also,
—sin®z —cos’x  —sin?z  cos’z 9
5 =— 5 5 =—1—cot’x
sin® x sin” sin® x
d d
Theorems 5 and 6: I (secz) =secztanz and o (cscx) = —cscxcotx
x o
Proof: We write secx = = (cos az:)f1 and apply the chain rule.
coS &
d d 1 o d -1 ) sin z 1 sin z
— (secx) = — ((cosx = —1(coszx — (cosz) | = —sinz) = = : =secrtanz
dz ( ) dx (( ) ) ( ) dz ( ) cos?x ( ) cos2r  cosT coST
d . : . .
The proof for 7 o5c is virtually identical: we apply the chain rule.
x

d ( ) d <( . )_1) 1 (s )_2 d . -1 cos x cosx 1 ‘

—(cscx) = — [ (sinz = —1(sinz —sinx | = cosx = — =— = —cotzcscx

dx dx dx sin? z sin? z sinx sinx

sinz .
Note: why do we prefer the form sec x tan x over the form 7 One of the reasons is the adventage we’ll see
cos? x

1

in differentiating the inverse functions sec™! z and csc™! .
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1
V1—22

d . _ _
Theorems 7 and &: T (sm 1 3:) = 17—302 and g (cos 1 av) = —

Proof: Recall that when we compose a function f with its inverse f~!' the result is always the same function,
(also called the identity function, id (z) = z)

f(F @) =2
We will state this fact for f (z) = sinz and differentiate both sides of the equation. For the left-hand side, we use
the chain rule.

sin (Sirf1 :c) =z
cos (sin*1 :L‘) e sinlz = 1 divide by cos (sixf1 x)
—sinlz = 71
dx © cos (sin_1 x)

We now need to simplify cos (sin’1 x) We will present two methods to simplify this expression.

Method 1. We first introduce a new variable, 3. Let 8 = sin~! 2. This means that —g <p< g, and sin 5 = .

We need to simplify cos (sin_1 :13) = cos 3. Since sin? B +cos? 5 =1,
~—

B
cos B =+4/1 —sin?f =+/1 — a2

T s . ... .
—<f< 5’ cos 3 is positive and so cos (sm*1 x) =1 —22

Si —
ince —5

Method 2. We first introduce a new variable, 3. Let 8 =sin! 2. This means that —g <pB< g, and sin 5 = z.

Now the goal is to simplify cos (sin_1 1‘) = cos 3.
N——

B

We will use a right triangle to find the expression - up| |The adventage of this method is that now we can read
to its sign. We first draw a right triangle in which| |any trigonometric function value of f = sin™! z using
T

sinff =x = 1 this right triangle.
1
L X
X
3 8
1-x*
Next we use the Pythagoream Theorem to find the From the triangle,

missing side to be v/1 — z2.
V1 — 2
cos 3 = cos (sin_1 z) = yo©r V1— 22

The answer at this point is really +v/1 — 22 as the triangle gave us the answer only up to a sign. For the sign,
. . . . .1 ™ ™ ..
we need to argue using the location of 5 on the unit circle. Since § = sin™" z, —3 <p < 5 Thus f is in the
first or in the fourth quadrant. In both cases, cosine is positive, thus cos (Siﬂ’l m) =122
1 1

d . 1. y_ _
Thus e (sm m) = o (sinfl m) =

(© Hidegkuti, Powell, 2012 Last revised: January 19, 2017
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d 1
The proof for T (cos*1 x) = ————— is virtually identical.
x

V1 — 22
Proof: Recall that when we compose a function f with its inverse f~% the result is always the same function.
F(f @) ==

We will state this fact for f(x) = cosz and differentiate both sides of the equation. For the left-hand side, we
use the chain rule.

cos (cos_1 :1:) =
—sin (cos*1 37) o (cos*1 x) = 1 divide by sin (cos*1 a:)
1
—_ 71 — e —
dx (cos™x) = sin (cos™! z)

We now need to simplify the expression sin (cos_1 :1:) We will present two methods for this.
Method 1. Let o = cos™'z. Then x = cosa and « is between 0 and .
sin (cos_1x> =sina =+v1—cos?a==+y1-— 22
—
[
Since « is between 0 and 7, sin « is positive and so sina = /1 — z2.

Method 2. Let o = cos™ 2. Then z = cosa and « is between 0 and 7.

x
We first draw a triangle in which cosa = x = 1 Please| |Now we can read any trigonometric function value using

note that every time we approach such a trigonometric | |this triangle.
question using a right triangle, our answer would be ac-

curate up to sign - for the sign we would have to argue 1
separately. | 1—x2
oL
1 X
o

X Now we read sine from the triangle:

V1 — 2
We find the missing side via the Pythagoream Theorem: sin a = sin (cos_1 IL‘) VT V1—ax?
5 1
V1—2=.

The answer at this point is really +v/1 — 22 as the triangle gave us the answer only up to a sign. For the sign,
we need to argue using the location of a on the unit circle. Since o = cos ™'z, 0 < o < 7. Thus « is in the first

or in the second quadrant. In both cases, sine is positive, thus sin (cos_1 :c) =1—2a2.
d 1 1

Consequently, T (cos_1 x) = - =

.’L‘

sin (coslz)  /1—22

FEnrichment
d d, . . . L B
If o (sm x) and o (cos x) are opposites, then what can be said about the function f (z) = sin™" x+cos™" z?
T T
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d d 1
Theorems 9 and 10: T (taurf1 a:) = P and In (cot*1 x) = —m

d
Proof: Recall that . (tanz) = sec’z = tan?x + 1. Also recall that when we compose a function f with its
x

inverse f~1 the result is always the same function.

F(F @)=z

We will state this fact for f (z) = tanx and differentiate both sides of the equation. For the left-hand side, we
use the chain rule.

tan (tan :U) = =z
sec? (tan_1 CL‘) . % (tan_1 :U) =1
(tan2 (tan_1 ZL‘) + 1) . % (tam_1 :B) =1 tan (tan_1 :17) =z
(mQ + 1) : % (tan_1 :U) =1 divide by 2% + 1
d -1 . 1
% (tan :n) = 211
The proof for o (cot_1 x) = —ﬁlﬂ is virtually identical. ~We compose the function cotz with its inverse
cot™! z and differentiate. Recall that e cotz = —cot?z — 1
cot (cot*1 x) =
—cot? (cot™tz) — 1) - i cot™lx) = 1 cot (cot™'z) ==z
dx
(—a:2 — 1) . % (co‘c*1 a:) = 1 divide by —2? —1
d 1 B 1 B 1
@(COt 9:) T 21 2241
Theorem 11 and 12: (sec*1 :L') = # and i (csc*1 x) = —;
du |2 Va? — 1 dz o] Va2 —1

Proof: We compose the function secz with its inverse sec™!  and differentiate. Recall that

secxr) =secxrtanz.
o, (sec)

sec (secf1 :c) tan (sec*1 a:) .

T tan (se(:*1 :v) . = 1 divide by x tan (secf1 :r)

1
x tan (sec! )

(sec™ )
(secz) = 1 sec (sec ™' z) = x
(sec™ )
(sec™ )

We now just need to simplify the expression tan (Sec_1 ZL’)
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Method 1. To simplify tan (sec_1 x), we introduce a new variable a. Let a = sec”'z. Then we have

tan (sec_1 x) = tan a where seca = z and « is between 0 and 7. Recall that sec2a = tan?a + 1. If we don’t

(03
have this formula memorized, we can easily derive it from the Pythagorean identity.

sinfa+cos’a = 1 divide by cos® z
sinfa cos?a 1
cos2a  cos?a cos? o

tana+1 = sec’a

tana = ++v/sec2a—1

Method 2. To simplify tan (sec_1 :c), we introduce a new variable a. Let o = sec
between 0 and 7. Then we need to compute tan a.

~lx. Then seca = z and « is

— Now we can read any trigonometric function value using
this triangle.

We draw a right triangle in which seca = x =

We find the missing side via the Pythagoream Theorem:
V72 — 1. Now we read from the triangle:

tan a = tan (sec*1 a:) =" =221

The answer at this point is really +=v/22 — 1 as the triangle gave us the answer only up to a sign. Thus the

derivative is
1 1

==
m(:l:\/azz—l) va? —1

We now need to figure out the sign of the derivative. From the graph of sec™' z we can see that it is strictly
increasing on both intervals making up its domain, thus the derivative is always positive. If = is positive, then

— (sec*1 x) =

d
(sec*1 x) = ——— and if z is negative, then . (sec*1 x) = ——————.  This can be expressed in a
x

% {1:‘\/{1’,‘2—1 LU\/J}2—1

shorter form as 1

|z| Va2 — 1

is virtually identical. As before, we compose the function cscx with

% (sec_1 x) =

The proof for i (csc_1 33) =

1
dx |z] Va? —1

its inverse and differentiate. Recall that % (cscx) = —cscxcotx
(csc m) = x
—csc (csc_1 :B) cot (csc_1 :E) . d— (CSC 1‘) =1 csc (csc_1 :E) =z
—x cot (csc_1 :U) . % (csc :13) =1 divide by — z cot (csc_1 :U)
i ( ) — _;
dx csela) = x cot (csc1 )
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7r
We need to simplify cot (cs.c*1 w) Let  =csclz. cot (csc_1 x) = cot @ where csca = x and « is between ——
N—— 2

«

and I.
2

Method 1. We start with the Pythagorean identity and divide both sides by sin? a.

sinfa+cos?a = 1 divide by sin®z
sinfa cos?a - 1
sinfa  sinfa sinfa
1+cot?a = csc?a
cot?a = cescta—1

cotaa = £+vesc2a—1

Method 2. We draw a right triangle in which csca =z = %
X
1
I‘\N

We find the missing side using the Pythagorean Theorem and read the desired trigonometric function value.

Thus the derivative is ) 1

- +
p(+Ve?—1) eVl

From the graph of csc™! = we can see that it is strictly decreasing on both intervals of its domain, thus the derivative

ar (csc_1 CL‘) =

d d
is always negative. If x is positive, then — (csc™tz) = ————— and if = is negative, then — (csc™1 ) =
ys neg p , - )= gative, el )
1
This can be expressed in a shorter form as
zvr? —1
1
-1
—(cscT ) = ——m
dx ( ) |z| Va2 — 1

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture
Notes. E-mail questions or comments to mhidegkuti@ccc.edu.
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