Sample Problems

Solve each of the following equations. Make sure to check your solutions.

1. 2x + 3 = 4x + 92. 3w - 5 = 5(w + 1)3. 3y - 9 = -2y + 44. 4 - x = 3(x - 7)5. 7(j - 5) + 9 = 2(-2j + 5) + 5j

6.
$$3(x-5) - 5(x-1) = -2x + 1$$

7. $(x-3)^2 - (2x-5)(x+1) = 5 - (x-1)^2$
8. $(x+1)^2 - (2x-1)^2 + (3x)^2 = 6x(x-2)$
9. $12 - (2p-1)(p+1) = -2(-p+5)^2$

Practice Problems

Solve each of the following equations. Make sure to check your solutions.

1.
$$5x - 3 = x + 9$$
16. $5(x - 1) - 3(-x + 1) = -3 + 8x$ 2. $-x + 13 = 2x + 1$ 17. $-2x - (3x - 1) = 2(5 - 3x)$ 3. $-2x + 4 = 5x - 10$ 18. $3(x - 4) - 4(x - 3) = 3(x - 2) + 2(3 - x)$ 4. $5x - 7 = 6x + 8$ 19. $2x(3x - 1) - x(5x - 2) = (x - 1)^2$ 5. $8x - 1 = 3x + 19$ 20. $y^2 - (y - 1)^2 + (y - 2)^2 = (y - 3)(y - 5)$ 6. $-7x - 1 = 3x - 21$ 21. $(3x)^2 - (x + 3)(5x - 3) = (5 - 2x)^2 - 16$ 7. $3(x - 4) + 5(x + 8) = 2(x - 1)$ 22. $(w + 4)(1 - 2w) = 3w - 2(w - 3)^2$ 8. $3(x - 4) = 2(x + 5)$ 23. $(2x - 3)^2 - 3(x - 2)^2 = 10 - (x - 2)(7 - x)$ 9. $4(5x + 1) = 6x + 4$ 24. $(2 - w)^2 - (2w - 3)^2 + 7 = (w - 2)(5 - 3w)$ 10. $3(2x - 7) - 2(5x + 2) = -5x - 30$ 24. $(2 - w)^2 - (2w - 3)^2 + 7 = (w - 2)(5 - 3w)$ 11. $a - 3 = 5(a - 1) - 2$ 25. $3(a + 11) - a(8 - 3a) = 3(a - 2)^2$ 12. $3y - 2 = -2y + 18$ 26. $-5(2x - 1) - (4 - x)^2 = 3 - (x + 1)^2$ 13. $2(b + 1) - 5(b - 3) = 2(b - 7) + 1$ 27. $5(-3 - x) - 3x(x - 2) = x - 3(x + 2)(x - 5)$ 14. $3(2x - 1) - 5(2 - x) = 4(x - 1) + 5$ 28. $2(-m - 2)^2 - (m - 2)^2 = 8m + (m + 2)^2$ 15. $5(x - 1) - 3(x + 1) = 3x - 8$ 29. $(3a - 5)(2 - a) - (2a - 1)(a + 3) = -5a^2 - 7$

Sample Problems - Answers

1.) -3 2.) -5 3.) $\frac{13}{5}$ 4.) $\frac{25}{4}$ 5.) 6 6.) no solution 7.) 2 8.) 0 9.) 3

Practice Problems - Answers

1.) 3	2.) 4	3.) 2	4.) -15	5.)	4	6.) 2	2 7.) -	-5 8	8.) 22	9.) 0	10.) -5	11.) 1
12.) 4	13.) 6	14.) 2	15.) 0	16.)	contr	radicti	ion, there	is no so	olution	17.) 9	18.) 0	19.) $\frac{1}{2}$
20.) 2	21.) () 22.)	1 23.)	3	24.)	4	25.) -3	3 26	6.) no	solution	27.) -5	
28.) all	numbers a	are solutio	on 29.)	0								

Sample Problems - Solutions

1. 2x + 3 = 4x + 9Solution:

> 2x + 3 = 4x + 9 subtract 2x from both sides 3 = 2x + 9 subtract 9 from both sides -6 = 2x divide both sides by 2-3 = x

We check: if x = -3, then

LHS = 2(-3) + 3 = -6 + 3 = -3RHS = 4(-3) + 9 = -12 + 9 = -3

Thus our solution, x = -3 is correct. (Note: LHS is short for the left-hand side and RHS is short for the right-hand side.)

2. 3w - 5 = 5(w + 1)

Solution: we first apply the law of distributivity to simplify the right-hand side.

3w-5	=	5(w+1)	
3w-5	=	5w + 5	subtract $3w$ from both sides
-5	=	2w + 5	subtract 5 from both sides
-10	=	2w	divide both sides by 2
-5	=	w	

We check. If w = -5, then

LHS =
$$3(-5) - 5 = -15 - 5 = -20$$

RHS = $5((-5) + 1) = 5(-4) = -20$

Thus our solution, w = -5 is correct.

3. 3y - 9 = -2y + 4Solution:

3y - 9	=	-2y + 4	add $2y$ to both sides
5y - 9	=	4	add 9 to both sides
5y	=	13	divide both sides by 5
y	=	$\frac{13}{5}$	

We check. If $x = \frac{13}{5}$, then

LHS =
$$3\left(\frac{13}{5}\right) - 9 = \frac{3}{1} \cdot \frac{13}{5} - 9 = \frac{39}{5} - \frac{9}{1} = \frac{39}{5} - \frac{45}{5} = \frac{-6}{5} = -\frac{6}{5}$$

RHS = $-2\left(\frac{13}{5}\right) + 4 = \frac{-2}{1} \cdot \frac{13}{5} + \frac{4}{1} = \frac{-26}{5} + \frac{20}{5} = \frac{-6}{5} = -\frac{6}{5}$

Thus $x = \frac{13}{5}$ is the correct solution.

© copyright Hidegkuti, Powell, 2011

4. 4 - x = 3(x - 7)

Solution: We first apply the law of distributivity to simplify the right-hand side.

4-x	=	3(x-7)	distribute 3
4-x	=	3x - 21	add x to both sides
4	=	4x - 21	add 21 to both sides
25	=	4x	divide both sides by 4
$\frac{25}{4}$	=	x	

We check. If $x = \frac{25}{4}$, then

LHS =
$$4 - x = 4 - \frac{25}{4} = \frac{4}{1} - \frac{25}{4} = \frac{16}{4} - \frac{25}{4} = \frac{16 - 25}{4} = \frac{-9}{4} = -\frac{9}{4}$$

RHS = $3(x - 7) = 3\left(\frac{25}{4} - 7\right) = 3\left(\frac{25}{4} - \frac{7}{1}\right) = 3\left(\frac{25}{4} - \frac{28}{4}\right) = 3\left(\frac{25 - 28}{4}\right)$
 $= 3\left(\frac{-3}{4}\right) = \frac{3}{1} \cdot \frac{-3}{4} = \frac{-9}{4} = -\frac{9}{4}$

Thus our solution, $x = \frac{25}{4}$ is correct.

5. 7(j-5) + 9 = 2(-2j+5) + 5jSolution:

7(j-5) + 9	=	2(-2j+5)+5j	distribute on both sides
7j - 35 + 9	=	-4j + 10 + 5j	combine like terms
7j - 26	=	j + 10	subtract j
6j - 26	=	10	add 26
6j	=	36	divide by 6
j	=	6	

We check: if j = 6, then

LHS =
$$7(6-5) + 9 = 7 \cdot 1 + 9 = 7 + 9 = 16$$

RHS = $2(-2 \cdot 6 + 5) + 5 \cdot 6 = 2(-12+5) + 30 = 2(-7) + 30 = -14 + 30 = 16$

Thus our solution is correct.

6. 3(x-5) - 5(x-1) = -2x + 1Solution:

> $3(x-5) - 5(x-1) = -2x + 1 \quad \text{multiply out parentheses}$ $3x - 15 - 5x + 5 = -2x + 1 \quad \text{combine like terms}$ $-2x - 10 = -2x + 1 \quad \text{add } 2x$ -10 = 1

Since x disappeared from the equation and we are left with an unconditionally false statement, there is no solution for this equation. This type of an equation is called a **contradiction**.

7. $(x-3)^2 - (2x-5)(x+1) = 5 - (x-1)^2$

Solution: We first multiply the polynomials as indicated. If the product is subtracted or further multiplied, we must keep the parentheses.

$$(x-3)^{2} - (2x-5)(x+1) = 5 - (x-1)^{2}$$

$$x^{2} - 3x - 3x + 9 - (2x^{2} + 2x - 5x - 5) = 5 - (x^{2} - x - x + 1)$$
 combine like terms
$$x^{2} - 6x + 9 - (2x^{2} - 3x - 5) = 5 - (x^{2} - 2x + 1)$$
 distribute
$$x^{2} - 6x + 9 - 2x^{2} + 3x + 5 = 5 - x^{2} + 2x - 1$$
 combine like terms
$$-x^{2} - 3x + 14 = -x^{2} + 2x + 4$$
 add x^{2}

$$-3x + 14 = 2x + 4$$
 add $3x$

$$14 = 5x + 4$$
 subtract 4
$$10 = 5x$$
 divide by 5
$$2 = x$$

We check. If x = 2, then

LHS =
$$(2-3)^2 - (2 \cdot 2 - 5)(2+1) = (-1)^2 - (4-5)(2+1) = (-1)^2 - (-1) \cdot 3$$

= $1 - (-3) = 4$
RHS = $5 - (2-1)^2 = 5 - 1^2 = 5 - 1 = 4$

Thus 2 is indeed the solution.

8. $(x+1)^2 - (2x-1)^2 + (3x)^2 = 6x(x-2)$

Solution: We first multiply the polynomials as indicated. If the product is subtracted or further multiplied, we must keep the parentheses.

$$(x+1)^{2} - (2x-1)^{2} + (3x)^{2} = 6x (x-2)$$

$$x^{2} + x + x + 1 - (4x^{2} - 2x - 2x + 1) + 9x^{2} = 6x^{2} - 12x$$

$$x^{2} + 2x + 1 - (4x^{2} - 4x + 1) + 9x^{2} = 6x^{2} - 12x$$
distribute
$$x^{2} + 2x + 1 - 4x^{2} + 4x - 1 + 9x^{2} = 6x^{2} - 12x$$
combine like terms
$$6x^{2} + 6x = 6x^{2} - 12x$$
subtract $6x^{2}$

$$6x = -12x$$
add $12x$

$$18x = 0$$
divide by 18
$$x = 0$$

We check. If x = 0, then

LHS =
$$(0+1)^2 - (2 \cdot 0 - 1)^2 + (3 \cdot 0)^2 = 1^2 - (-1)^2 + (0)^2$$

= $1 - 1 + 0 = 0$
RHS = $6 \cdot 0 \cdot (0 - 2) = 6 \cdot 0 \cdot (-2) = 0$

Thus 0 is indeed the solution.

9. $12 - (2p - 1)(p + 1) = -2(-p + 5)^2$ Solution: We first multiply the polynomials as indicated. If the product is subtracted or further multiplied, we must keep the parentheses.

$$12 - (2p - 1) (p + 1) = -2 (-p + 5)^{2}$$

$$12 - (2p^{2} + 2p - p - 1) = -2 (p^{2} - 5p - 5p + 25)$$
 combine like terms
$$12 - (2p^{2} + p - 1) = -2 (p^{2} - 10p + 25)$$
 distribute
$$12 - 2p^{2} - p + 1 = -2p^{2} + 20p - 50$$
 combine like terms
$$-2p^{2} - p + 13 = -2p^{2} + 20p - 50$$
 add $2p^{2}$

$$-p + 13 = 20p - 50$$
 add p

$$13 = 21p - 50$$
 add 50
$$63 = 21p$$
 divide by 21
$$3 = p$$

We check. If p = 3, then

LHS =
$$12 - (2 \cdot 3 - 1)(3 + 1) = 12 - (6 - 1)(3 + 1) = 12 - 5 \cdot 4 = 12 - 20 = -8$$

RHS = $-2(-3 + 5)^2 = -2 \cdot 2^2 = -2 \cdot 4 = -8$

Thus 3 is indeed the solution.

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or comments to mhidegkuti@ccc.edu.