Sample Problems

Solve each of the following equations. Make sure to check your solutions.

1. $2 x+3=4 x+9$
2. $3 w-5=5(w+1)$
3. $3 y-9=-2 y+4$
4. $4-x=3(x-7)$
5. $7(j-5)+9=2(-2 j+5)+5 j$
6. $3(x-5)-5(x-1)=-2 x+1$
7. $(x-3)^{2}-(2 x-5)(x+1)=5-(x-1)^{2}$
8. $(x+1)^{2}-(2 x-1)^{2}+(3 x)^{2}=6 x(x-2)$
9. $12-(2 p-1)(p+1)=-2(-p+5)^{2}$

Practice Problems

Solve each of the following equations. Make sure to check your solutions.

1. $5 x-3=x+9$
2. $-x+13=2 x+1$
3. $-2 x+4=5 x-10$
4. $5 x-7=6 x+8$
5. $8 x-1=3 x+19$
6. $-7 x-1=3 x-21$
7. $3(x-4)+5(x+8)=2(x-1)$
8. $3(x-4)=2(x+5)$
9. $4(5 x+1)=6 x+4$
10. $3(2 x-7)-2(5 x+2)=-5 x-30$
11. $a-3=5(a-1)-2$
12. $3 y-2=-2 y+18$
13. $2(b+1)-5(b-3)=2(b-7)+1$
14. $3(2 x-1)-5(2-x)=4(x-1)+5$
15. $5(x-1)-3(x+1)=3 x-8$
16. $5(x-1)-3(-x+1)=-3+8 x$
17. $-2 x-(3 x-1)=2(5-3 x)$
18. $3(x-4)-4(x-3)=3(x-2)+2(3-x)$
19. $2 x(3 x-1)-x(5 x-2)=(x-1)^{2}$
20. $y^{2}-(y-1)^{2}+(y-2)^{2}=(y-3)(y-5)$
21. $(3 x)^{2}-(x+3)(5 x-3)=(5-2 x)^{2}-16$
22. $(w+4)(1-2 w)=3 w-2(w-3)^{2}$
23. $(2 x-3)^{2}-3(x-2)^{2}=10-(x-2)(7-x)$
24. $(2-w)^{2}-(2 w-3)^{2}+7=(w-2)(5-3 w)$
25. $3(a+11)-a(8-3 a)=3(a-2)^{2}$
26. $-5(2 x-1)-(4-x)^{2}=3-(x+1)^{2}$
27. $5(-3-x)-3 x(x-2)=x-3(x+2)(x-5)$
28. $2(-m-2)^{2}-(m-2)^{2}=8 m+(m+2)^{2}$
29. $(3 a-5)(2-a)-(2 a-1)(a+3)=-5 a^{2}-7$

Sample Problems - Answers

1.) -3
2.) -5
3.) $\frac{13}{5}$
4.) $\frac{25}{4}$
5.) 6
6.) no solution
7.) 2
8.) 0
9.) 3

Practice Problems - Answers

1.) 3
2.) 4
3.) 2
4.) -15
5.) 4
6.) 2
7.) -5
8.) 22
9.) 0
10.) -5
11.) 1
12.) 4
13.) 6
14.) 2
15.) 0
16.) contradiction, there is no solution
17.) 9
18.) 0
19.) $\frac{1}{2}$
20.) 2
21.) 0
22.) 1
23.) 3
24.) 4
25.) -3
26.) no solution
27.) -5
28.) all numbers are solution 29.) 0

Sample Problems - Solutions

1. $2 x+3=4 x+9$

Solution:

$$
\begin{array}{rlrl}
2 x+3 & =4 x+9 & \text { subtract } 2 x \text { from both sides } \\
3 & =2 x+9 & & \text { subtract } 9 \text { from both sides } \\
-6 & =2 x & & \text { divide both sides by } 2 \\
-3 & =x & &
\end{array}
$$

We check: if $x=-3$, then

$$
\begin{aligned}
\text { LHS } & =2(-3)+3=-6+3=-3 \\
\text { RHS } & =4(-3)+9=-12+9=-3
\end{aligned}
$$

Thus our solution, $x=-3$ is correct. (Note: LHS is short for the left-hand side and RHS is short for the right-hand side.)
2. $3 w-5=5(w+1)$

Solution: we first apply the law of distributivity to simplify the right-hand side.

$$
\begin{aligned}
3 w-5 & =5(w+1) & & \\
3 w-5 & =5 w+5 & & \text { subtract } 3 w \text { from both sides } \\
-5 & =2 w+5 & & \text { subtract } 5 \text { from both sides } \\
-10 & =2 w & & \text { divide both sides by } 2 \\
-5 & =w & &
\end{aligned}
$$

We check. If $w=-5$, then

$$
\begin{aligned}
\mathrm{LHS} & =3(-5)-5=-15-5=-20 \\
\mathrm{RHS} & =5((-5)+1)=5(-4)=-20
\end{aligned}
$$

Thus our solution, $w=-5$ is correct.
3. $3 y-9=-2 y+4$

Solution:

$$
\begin{aligned}
3 y-9 & =-2 y+4 & & \text { add } 2 y \text { to both sides } \\
5 y-9 & =4 & & \text { add } 9 \text { to both sides } \\
5 y & =13 & & \text { divide both sides by } 5 \\
y & =\frac{13}{5} & &
\end{aligned}
$$

We check. If $x=\frac{13}{5}$, then

$$
\begin{aligned}
& \text { LHS }=3\left(\frac{13}{5}\right)-9=\frac{3}{1} \cdot \frac{13}{5}-9=\frac{39}{5}-\frac{9}{1}=\frac{39}{5}-\frac{45}{5}=\frac{-6}{5}=-\frac{6}{5} \\
& \text { RHS }=-2\left(\frac{13}{5}\right)+4=\frac{-2}{1} \cdot \frac{13}{5}+\frac{4}{1}=\frac{-26}{5}+\frac{20}{5}=\frac{-6}{5}=-\frac{6}{5}
\end{aligned}
$$

Thus $x=\frac{13}{5}$ is the correct solution.

4. $4-x=3(x-7)$

Solution: We first apply the law of distributivity to simplify the right-hand side.

$$
\begin{aligned}
4-x & =3(x-7) & & \text { distribute } 3 \\
4-x & =3 x-21 & & \text { add } x \text { to both sides } \\
4 & =4 x-21 & & \text { add } 21 \text { to both sides } \\
25 & =4 x & & \text { divide both sides by } 4 \\
\frac{25}{4} & =x & &
\end{aligned}
$$

We check. If $x=\frac{25}{4}$, then

$$
\begin{aligned}
\text { LHS } & =4-x=4-\frac{25}{4}=\frac{4}{1}-\frac{25}{4}=\frac{16}{4}-\frac{25}{4}=\frac{16-25}{4}=\frac{-9}{4}=-\frac{9}{4} \\
\text { RHS } & =3(x-7)=3\left(\frac{25}{4}-7\right)=3\left(\frac{25}{4}-\frac{7}{1}\right)=3\left(\frac{25}{4}-\frac{28}{4}\right)=3\left(\frac{25-28}{4}\right) \\
& =3\left(\frac{-3}{4}\right)=\frac{3}{1} \cdot \frac{-3}{4}=\frac{-9}{4}=-\frac{9}{4}
\end{aligned}
$$

Thus our solution, $x=\frac{25}{4}$ is correct.
5. $7(j-5)+9=2(-2 j+5)+5 j$

Solution:

$$
\begin{array}{rlrl}
7(j-5)+9 & =2(-2 j+5)+5 j & & \text { distribute on both sides } \\
7 j-35+9 & =-4 j+10+5 j & & \text { combine like terms } \\
7 j-26 & =j+10 & & \text { subtract } j \\
6 j-26 & =10 & & \text { add } 26 \\
6 j & =36 & & \text { divide by } 6 \\
j & =6 &
\end{array}
$$

We check: if $j=6$, then

$$
\begin{aligned}
\text { LHS } & =7(6-5)+9=7 \cdot 1+9=7+9=16 \\
\text { RHS } & =2(-2 \cdot 6+5)+5 \cdot 6=2(-12+5)+30=2(-7)+30=-14+30=16
\end{aligned}
$$

Thus our solution is correct.
6. $3(x-5)-5(x-1)=-2 x+1$

Solution:

$$
\begin{array}{rlrl}
3(x-5)-5(x-1) & =-2 x+1 & \text { multiply out parentheses } \\
3 x-15-5 x+5 & =-2 x+1 & \text { combine like terms } \\
-2 x-10 & =-2 x+1 & \text { add } 2 x \\
-10 & =1 & &
\end{array}
$$

Since x disappeared from the equation and we are left with an unconditionally false statement, there is no solution for this equation. This type of an equation is called a contradiction.
7. $(x-3)^{2}-(2 x-5)(x+1)=5-(x-1)^{2}$

Solution: We first multiply the polynomials as indicated. If the product is subtracted or further multiplied, we must keep the parentheses.

$$
\begin{aligned}
(x-3)^{2}-(2 x-5)(x+1) & =5-(x-1)^{2} & & \\
x^{2}-3 x-3 x+9-\left(2 x^{2}+2 x-5 x-5\right) & =5-\left(x^{2}-x-x+1\right) & & \text { combine like terms } \\
x^{2}-6 x+9-\left(2 x^{2}-3 x-5\right) & =5-\left(x^{2}-2 x+1\right) & & \text { distribute } \\
x^{2}-6 x+9-2 x^{2}+3 x+5 & =5-x^{2}+2 x-1 & & \text { combine like terms } \\
-x^{2}-3 x+14 & =-x^{2}+2 x+4 & & \text { add } x^{2} \\
-3 x+14 & =2 x+4 & & \text { add } 3 x \\
14 & =5 x+4 & & \text { subtract } 4 \\
10 & =5 x & & \text { divide by } 5 \\
2 & =x & &
\end{aligned}
$$

We check. If $x=2$, then

$$
\begin{aligned}
\text { LHS } & =(2-3)^{2}-(2 \cdot 2-5)(2+1)=(-1)^{2}-(4-5)(2+1)=(-1)^{2}-(-1) \cdot 3 \\
& =1-(-3)=4 \\
\text { RHS } & =5-(2-1)^{2}=5-1^{2}=5-1=4
\end{aligned}
$$

Thus 2 is indeed the solution.
8. $(x+1)^{2}-(2 x-1)^{2}+(3 x)^{2}=6 x(x-2)$

Solution: We first multiply the polynomials as indicated. If the product is subtracted or further multiplied, we must keep the parentheses.

$$
\begin{aligned}
(x+1)^{2}-(2 x-1)^{2}+(3 x)^{2} & =6 x(x-2) & & \\
x^{2}+x+x+1-\left(4 x^{2}-2 x-2 x+1\right)+9 x^{2} & =6 x^{2}-12 x & & \\
x^{2}+2 x+1-\left(4 x^{2}-4 x+1\right)+9 x^{2} & =6 x^{2}-12 x & & \text { distribute } \\
x^{2}+2 x+1-4 x^{2}+4 x-1+9 x^{2} & =6 x^{2}-12 x & & \text { combine like terms } \\
6 x^{2}+6 x & =6 x^{2}-12 x & & \text { subtract } 6 x^{2} \\
6 x & =-12 x & & \text { add } 12 x \\
18 x & =0 & & \text { divide by } 18 \\
x & =0 & &
\end{aligned}
$$

We check. If $x=0$, then

$$
\begin{aligned}
\text { LHS } & =(0+1)^{2}-(2 \cdot 0-1)^{2}+(3 \cdot 0)^{2}=1^{2}-(-1)^{2}+(0)^{2} \\
& =1-1+0=0 \\
\text { RHS } & =6 \cdot 0 \cdot(0-2)=6 \cdot 0 \cdot(-2)=0
\end{aligned}
$$

Thus 0 is indeed the solution.
9. $12-(2 p-1)(p+1)=-2(-p+5)^{2}$

Solution: We first multiply the polynomials as indicated. If the product is subtracted or further multiplied,
we must keep the parentheses.

$$
\begin{aligned}
12-(2 p-1)(p+1) & =-2(-p+5)^{2} & & \\
12-\left(2 p^{2}+2 p-p-1\right) & =-2\left(p^{2}-5 p-5 p+25\right) & & \text { combine like terms } \\
12-\left(2 p^{2}+p-1\right) & =-2\left(p^{2}-10 p+25\right) & & \text { distribute } \\
12-2 p^{2}-p+1 & =-2 p^{2}+20 p-50 & & \text { combine like terms } \\
-2 p^{2}-p+13 & =-2 p^{2}+20 p-50 & & \text { add } 2 p^{2} \\
-p+13 & =20 p-50 & & \text { add } p \\
13 & =21 p-50 & & \text { add } 50 \\
63 & =21 p & & \text { divide by } 21 \\
3 & =p & &
\end{aligned}
$$

We check. If $p=3$, then

$$
\begin{aligned}
\text { LHS } & =12-(2 \cdot 3-1)(3+1)=12-(6-1)(3+1)=12-5 \cdot 4=12-20=-8 \\
\text { RHS } & =-2(-3+5)^{2}=-2 \cdot 2^{2}=-2 \cdot 4=-8
\end{aligned}
$$

Thus 3 is indeed the solution.

