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Part 1 - The History Thus Far and the Problem

Recall what we know about exponentiation thus far. Exponential notation expresses repeated multiplication.

Definition: We define 27 to denote the factor 2 multiplied by itself repeatedly, such as

2.2.2.2.2.2.2 =97

7 factors

When mathematicians agreed to this definition, that was a free choice. They could have gone with other definitions. Once this
definition exists, however, certain properties are automatically true, and we have no other option but to recognize them as true.
They just fell into our laps.

Theorem 1. If a is any number and m, n are any positive integers, then a” - a™ = g™

n
. e a _
Theorem 2. If a is any non-zero number and m, n are any positive integers, then — = a"™™
a

Theorem 3. If a is any number and m, n are any positive integers, then (a™)"" = a™™

Theorem 4. If a, b are any numbers and n is any positive integer, then (ab)" = a"b"™

n
Theorem 5. If a, b are any numbers, b # 0, and n is any positive integer, then (%) =

Again, the definition, immediately followed by the theorems. And then there was a quiet. Another opening for a free choice.

Consider the expression 2¥. The problem is that the definition of exponentiation only allows for a positive integer value of x.

The expression 2% is meaningful for z = 2 or 9 or 100, but it is not meaningful for values of z such as —3 or — or 3.2. In short,
the world of exponents was just the set of all natural numbers. Mathematicians usually don’t like that. The best case scenario,

the ultimate hope is that the definition of exponents could be extended to any number for x. That way, 2* would be meaningful,
no matter what the value of « is.

So, one of the issues was the desire to grow our world of exponents beyond the set of all natural numbers. This will be achieved
in several steps. Today, we are only focusing on enlarging the world of exponents from N to Z (i.e. from the set of all natural
numbers to the set of all integers).

The other issue was that as we enlarge our world, we pay especial attention that the new definitions will not conflict with the
mathematics we already have. This principle comes up often in our choices, and it is sometimes called the expansion principle.

Definition: In many situations, mathematicians attempt to increase, to enlarge our world. The expansion
principle is that when we enlarge our mathematics by adding new definitions, we do so in
such a way that the new definitions never create conflicts with the mathematics we already
have.
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Part 2 - Integer Exponents

Suppose we want to define 2°. The repeated multiplication definition can not be applied to zero, so we have complete freedom
. . . . L a"
to define 2°. As it turns out, if we insist on a definition that does not conflict with Rule 2, — = a™™ ™, then we do not have all
a

that many choices for 2°. Let us think of zero as the result of the subtraction 3 — 3, and that we would like to define 2° so that
Rule 2 is still true.
g0 _gr-s ez 208
238

This is an expansion principle proof. It did not prove that the value of 2° is or must be zero. It showed much less; that if we
wanted to define 2° without harming Rule 2 in the example given, then the only possible value for 2° is 1. The reader should
imagine a team of mathematicians making first sure that no part of our good old math is hurt if we define 2° = 1. And as it
turned out, this is exactly the case.

This computation can be repeated with many different bases. For example,

o mle2 52 25 o me2 (=37 9
50 —52-2 me2 0 9y —3)0 = (—3)2 "= =-=1

n
The only base that is problematic is 0. Indeed, division by zero is not allowed and Rule 2, a—m = "~ does not work with
a

. . . .0
a = 0. If we try to perform the same computation with zero, we ultimately end up in 0 which is undefined.

Theorem 6. If a is any non-zero number, then a® = 1.

0° is undefined.

Please note that as we extend our world of exponents, old issues might re-surface. For example, (—3)O =1but —3° = —1is
an important distinction, but not a new one.

Now that we have defined zero exponent, we will similarly try to define negative integer exponents such as 273,

Again, the original definition can not be applied. We cannot write down the factor two negative three times. So we have a
freedom here to define 272 in any way we wish. In this decision, we will again use the expansion principle: that we would like

to keep our old rules after having 273 defined.
. . a" . . e
We will again use Rule 2, — = a"~™ and write —3 as a subtraction between two positive integers.
a

2t 2 1 1
9=3 —gl-a Rle2 = = _ - or, more elegantly, 273

24 6 8 23

2% 2.2.2.2 2

When we discovered this rule, we saw that it was true because of cancellation. In case of a negative exponent, we have the same
cancellation, it’s just that we run out of factors in the numerator first. The computation can be repated with any base except for
Zero.

. . o 1
Theorem 7. If a is any non-zero number, and n is any positive integer, thena™" = —.
a

0~™ is undefined.
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Example 1. Simplify each of the following expressions. Use only positive exponents in your answer.

-3
a) 572 b) a7 ¢) % d) <§> e) % f) 2273

1
Solution: a) Recall our new rule, a™™ = —-.  We apply this rule: 572 = =] —|
a

52 |25

1
ad |

b) We can use the same rule again: ¢ > =

¢) In this case, the expression with the negative exponent is in the denominator.

1 1
The short story is that 373 = 32 = 9. The long story is that we apply our new rule a=" = —- and then we
a
divide by mutiplying by the reciprocal.
1
1 1 1 13 9
e s R
32 32

1 .
So, — can be re-written as a™.
o

d) In this case, the expression with the negative exponent is already a fraction.

. 2\ 70 3\ 27 . 1
The short story is that (3) = (2) =3 The long story is that we apply our new rule a™" = — and
a

then we divide by mutiplying by the reciprocal.

I P
N

ﬁ‘ oo‘r—n\ =

3

O

This computation shows that (%) e <b> .
a

. 1 . . o .
e) The short story is that — can be re-written as ™. The computation below justifies this step.
a

1

1 1 1 1 23 a3 3

F_T_T_I'T_T_
23 23

1 .
So, — can be re-written as a™.

a

f) It is a common mistake to interpret 2273 as (256)73. Without the parentheses, we perform the exponentiation
before the multiplication. Therefore, the correct computation is

2
23 =2.23="2

1 [2
1 a3 |23
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1
Theorem: The following statements are practical applications of the rule a™” = — and frequently
a’fL
1 —n b\"
— =a" and ( 2) = |-
-n b a

1
Proof: As the computation shows, we apply the rule a™" = —- and then perform the division by multiplying by the reciprocal.
a

occur in computations.

S|

1 1
1 1 1 1 av o ay-—n 1 11 v b\"
e ns u b Ak A () (@ T e e W (end of procf)
@ b
a’h? .
Example 2. Re-write the expression sy using only positive exponents.
Solution: We re-write the expressions with negative exponents using the rule a™ = —.
a
3 1 ad 1 a3
a3b—5_a b?_T b75_ b75 _a73 672_ CL302
C_2d4_i-d4_i.i_ d74 TR dA T | pAdA
c? 2 1 c2

Notice the pattern here. If a factor with a negative exponent is in the numerator, we can re-write it with a positive exponent in
the denominator. Also, if a factor with a negative exponent is in the denominator, we can re-write it with a positive exponent in

the numerator.

a "™
Pd—1  acP

Theorem: where a, ¢, d are any non-zero numbers and n, m, p, q are positive integers.

The definitions of a” and a~" were developed with the intention that the previous rules (1 through 5) will remain true. Keep
that in mind in case of computations with more complex exponential expressions.

Example 3. Simplify each of the given expressions. Present your answer using only positive exponents.
2) ( _2)—5 b) (—$72)73 o) a3 d) a3 ¢) (2@74b3)75
a - 7 - I A
26 ()™ a=5b3 (3a3b=2)"
Solution: a) It is much preferred to first simplify the exponent. Repeated exponentiation means multiplication in the exponent.

(a—2)—5 — g2(=5) _[,10

b) Let us re-write the solo negative signs as multiplications by —1. Then we will use the rules of exponents to
simplify the exponents. Only after that will we address negative exponents.

(=) (L) ()P (-)a

a6 (—2)™ 2 6(=1.2)7t o6 (—1)tzt  26(—1)"tz
Now we get rid of all negative exponents by moving the factors. A factor with exponent —5 in the numerator can
be re-written as a factor with exponent 5 in the denominator, and vica versa.
(—=1)72 28 (—1)* 262544 1.z 6

O et (c1)? 1
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n -3
¢) Solution 1: apply the rule a—m —gnmm, Y 3(-8) — 348 :
a

a3 a®
A
I N
a a
d) First we get rid of negative exponents.
a"2p3 a® a® ad

a5 @233 a2t | b6

e) We can save a lot of work by noticing that the denominator is just 1, because any non-zero quantity raised to the
power zero is 1, and so (3a3b_2)0 =1.

(2a‘4b3)_5 B 95 (a—4)—5 (b3)_5 B 9—5,20p—15 20 20

(3a3b-2)" 1 1 2% 3205

Part 3 - Scientific Notation Revisited

When we first saw scientific notation, we learned to use it to handle uncomfortbly large numbers.

Recall the definition of scientific notation:

Definition: We can write numbers in scientific notation. This means to write a number as a product of
two numbers. The first number is between 1 and 10 (can be 1 but must be less than 10), and
the second number is a 10—power. For example, the scientific notation for
428 600 000 000 is 4.286 x 101,

With negative exponents, we can also use scientific notation to handle extremely small numbers. For example, the mass of an
electron is 0.00000000000000000000000000091094 grams. Instead of hurds of trailing zeroes, now we are faced with many
zeroes after the decimal point. This number can be re-written as 9. 1094 - 10728,

Example 4. Re-write the number 0.0000000317 using scientific notation.

Solution: The first number in scientific notation needs to be between 1 and 10. In this case, this number is 3.17. We just
need to figure out the 10—power in the second part. We count how many decimal places we move the decimal from

0.0000000317 to 3.17. We count 8 decimal places. So the correct answer is [3.17 - 1078 |.

Example 5. Suppose that A = 3.8-10'% and B = 6.5-10~8. Perform each of the following operations. Present your answer
using scientific notation.

B
a) B2 b) AB? c) —
A
Solution: a) We will apply rules of exponents.
B2 = (6.5-108)" =6.52 - (1078)% = 42.25 - 1016

This number is not in scientific notation because 42.25 is too large for the first part of scientific notation. Recall
that the first factor must be between 1 and 10. So we re-write 42.25 as 4.225 - 10.

B2 =42.25-10"16 = 4.225.10- 10716 = 4.225 . 101+(=16) —|4.995. 1015
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b) We will apply rules of exponents.

AB? = (3.8-10) (6.5 - 1078)?

=38

160.55- 107!

10%5.6.52 - (1078)* = 3.8 - 10'5 - 42.25 - 10716

= 16.055

Simplify each of the following. Assume that all variables represent positive numbers.

= (3.8-42.25) - (105 - 10716) = 160.55 - 1015+(~16) =

This number is not in scientific notation because 16.055 is too large for the first part of scientific notation.

AB? = 16.055 = [1.6055 - 10|.

B 6.5-10°8 6.5 815

—= = =|1.7105-107% |,
9 A= 38 100 <38> 107719 = [1.7105 - 10°

Sample Problems

exponents.
_9 50 12 —2
L3 8. — 15. °
1 10a— m-
2. —
9—3 43 3,—5
9. o 16. =L
3. m™4 &
1 10. 2° 7. 18¢3
4. F 0 6q—3
11. —2
5.a% a7t 2\ *
12. (—z)° 18. <3)
6. p3 (p’7) »® B B
13.(77) (07) (071) 19. 2473
z4 1
1= 14. 20. (2y)~°

20735 \ 7, . . 3 23025 —2
26. < Py 2> (a3b7?) 30. <— 3 )
_9;\—4
27. (—2a7?) (—2a72b) a7 500
3. (-2
(=3p°¢°)” ) < y 3 )
28.
(2¢%
14 ,-1
—9213 2 T +y
29, < 2a _fb ) 32. P R—

36.

Present your answer without negative

()

a3h=?

22. m

23. (3m?)

24. (—2ab=3) "

25. (k3)_3
(k=5)?

(—2a*2)72 b3a? (—aba*Qb*Q)
2a2 (—2a-2b) "2 ab®

14 —a? (bila)f5 -
C\ b (—ab?) B
(x—2)—2 y3m0 (_nyoy—2x—2)0
35.
yad (y2x) "% (22 1yad) !

-3
33.

Suppose that z = 8.5 - 107'2 and y = 7.5 - 107. Perform each of the following operations. Present your answer using

scientific notation.

a) Ty b) 23 ) zy? d) z e) —=
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Answers

Sample Problems

1 1
5 7 4
1 3.4
1. -1 12,1  13. — 14 b* 15.m3 16, =2
b4 y5
1 25 5 1 b
20, — 21, 2 220 & o3 = o4
8y3 9 b8 9mb 8a?
4 10 4
28. 1890 29, 22 30, T 311 32 Y
b12 y6 y—

36. a) 6.375-107%  b) 6.1413-1073*  ¢) 4.7813 - 10*

(© Hidegkuti, Powell, 2008

x® 8. 5a® 9. 10. 1
t7
27 2
17. 3¢5 18. = 19. =
q g 7
3 a’
25. k 26. =a3b 27 ——
@ 8
b® 1 2t
—— 4, — et
33 5 3 3 35 /7

1063

d) 1.1333-107 &) 1.6903-
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///d Sample Problems - Solutions

Simplify each of the following. Assume that all variables represent positive numbers. Present your answer without negative

exponents.
1. 372
. . _ 1
Solution: We just apply the rule a™" = —.
a
1 1
372=> ==
32 9
1
2. F
. 1
Solution: We apply the rule a ™" = prx
11 1
23 1 71
23 8
To divide is to multiply by the reciprocal:
1 8
R
8
.. . 1
This is true in general: —— = a"
a—n
1 1 a™ n
PR S W
an
3. m™*
, _ 1
Solution: We apply the rule a™" = —.
a
1
—4
me=
1
4. F
. 1
Solution: We have already proven that — = a™
a
1 5
b
5. a8 a7t
Solution 1: We can apply the rule a” - a™ = o™

8. 4=l = 8+(=1) — 7
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n

1
Solution 2: We can apply the rule a=” = — and then the rule —
a” a™

6. p? (p_7) 8

Solution 1: We can apply the rule a” - a™ = o™

1
Solution 2: We can apply the rules a™" = — and @™ - a™ = a™t™ and — =a""

p3(p—7)p8:p3_i,p8:£3.i.£8:p3 P’ :p73+8 :pu =plt=7 = p*
p’ L pt 1 p’ pT T
—4
g
o
a’l’l
Solution 1: We can apply the rule — = a"™™
a
x_g _pmA(=9) L 49 5
-
. 1 a”
Solution 2: We can apply the rules a™" = — and — = a" ™.
a” a™
et a? _ 94 5
-9 74
50 12
g 24
10a—3
an
Solution 1: We can apply the rule — = a"™™.
a
50a!2 12
— 5g12-(=3) — 51243 _ 5,15
10a—3
. 1 a”
Solution 2: We can apply the rules ™" = — and — = o™,
a” am
50a'? __5Oa}2a3 5123 _ 5,15
10a—3 10
t_3
9. —
t4

1
Solution 1: We can apply the rules & g™ and thena " = —
a™ a™
-3

1
o 4—3—-4 _ ;-7 _
i =t =t =7
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n

1
Solution 2: We can apply the rule a™" = — and then a” - a™
a

10. 2

Solution: There is a separate rule stating that as long as z is not zero, then 20 = 1. So the answer is 1.
11. —2°

Solution: This is the opposite of 2 and so the answer is —1.

—2l=—-1.2=-1.1=-1

12. (—z)°

Solution: This is again 1 because any non-zero riased to the power zero is 1.
13. (b7°) (b*) (b71)

1
Solution 1: We can apply the rules a™ - a™ = a™*™ and then a ™" = —.

a
1
-5\ (1.2 (3—1 —5424(—1 —4
(7°) (%) (57) = #2400 =t =
1
Solution 2: We can apply the rule a™" = —- and then just cancel.
a
@) ()= =L L S S L S
e bl b5 1 b b5 B-B-b-b-b-b bt
1
4 ———=
(6=°) (6%) (b~1)
1
Solution 1: We can apply the rules a” - a™ = a™*™ and then a ™" = —.
a
1 B 1 R S S bt "
N N B e e e S
bt
1 n
Solution 2: We can apply the rule a=" = — and then a—m =a" ™
a a
=) @) (=) b
-2
m
15. —
Solution 1: We can apply the rules a—m =a" ™andthena™" = —.
a a
M2 (=5) 245 _ 3
m-—o
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1 n
Solution 2: We can apply the rule a™" = — and then a—
n m

a a
-2 5
m-_m _ 52_ 3
e A
3,5
z°yY
16. pou
Solution: Each variable occurs only once and so this problem is just about bringing it to the form required. We can apply
1
the rule ™" = —. We hve alread shown that — = a”.
a” a™ "
By 4B 4
P Y
18¢°
17. 4
6g—3

n
Solution 1: We can apply the rule a—m =a" ™,
a

18q3 G - 3q37(73) 3q3+3

= == g 3
643 61 1 4
1
Solution 2: We can apply the rules a™" = — and then a" - a™ = a™tm,
a
18¢° _6-30°¢° _ ;6
6q—3 6-1
9\ 3
18. | =
(5)
) _ 1
Solution: We can apply the rule a™" = —.
a
2N _ v 1 1T T
3) “ayTzzITE TUETy
(3) 3 3 3 27
—n b n
Note that we basically proved here that (%) = <) .
a
19. 2973
1
Solution: We can apply the rule a™" = —. It is important to note that the base of exponentiation is y and not 2y.
a
1 2 1 2
=2 =2. ==
v ool oy
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20. (2y)~°
1
Solution: We can apply the rule =" = —. This time the base of exponentiation is 2y. So we will apply the rule
a
(ab)" = a"b™.
1 1 1
(2y)° = = =—
(2 y)3 233/3 8y3
-2
21 (-3)
5
) _ 1
Solution 1: We can apply the rule a™" = —
a

0]
=
=3
@]
=]
N
5
]
=
Q
<
(¢}
o
]
o
=,
]
c
2N
<
-
=
=1
~~
[S]
~—
|
3
I
/‘\
——
.S
c
2.
=
uQ
-+
=
o
J—P

a’h=?

2.

n

1
Solution 1: We can apply the rule @ "™ and thena ™" = —.
a™ a”

31,—5
a b = a3_(—2)b_5_3 = a3+2b_5_3 = a5b_8 = CL5 . i a L a

a=2b? b8 1 8

1
Solution 2: We can apply the rules a™" = — and @™ - ™ = atm,
a

a3h=? ala? a®

a=20% B BB
23. (3m3)~°
1
Solution: We can apply the rule a~" = — and then (ab)" = a™b" and also (a")" = a"™.
a

Gudy?o Lo 1 L 1
m) _(3m3)2_32(m3)2_9m3-2_9m6

24, (—2ab73)"
Solution: We can apply the rule (ab)" = a™b" and then (a")™ = a™™.

(200737 = (=2)Pa B (b7) 0 = (-2) a3 = (—2) P a3
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We now apply a~

n

n

Solution: We can apply the rule (a™)™ = a™™ and then a—m =a" ",
a

2a3b°

02)°

13(=3)

k—9

(k—5)2 = 52

—2
_5\—3
26. <—3a'?’bZ> (a3b 5)

Solution:

(© Hidegkuti, Powell, 2008

==

22 (a=6)2 (7)2 (a3’

9 1

4a—12p14 ) (CL3)3 (b_5)3

9a'? 1

4p14 " 43-3p(—5)3

9a1? 1

Apld ~ 49p—15

9412 b5 9gl2pl5

A g0 T 4bligd

0a12-9p15-14  g43pl
4 !

= Za?’b

== L—9—(=10) _ 1.—9+10 _ ;1 _

b9
8a3

k

Last revised
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27. (—=2a7%) (=2a72p) "

Solution:

(=3p°¢%)"
(2¢%p3) "

Solution:

—213 -2
2. <2ab_3>
—22 (a~1b)

Solution:

(© Hidegkuti, Powell, 2008

1
L a ) (—2)* (a=2)* b
-2 1
a®  16a-8b?
-2 a8
a3 16b%
B —2a8 - —2a8
a3 - 1664 16a3b?
1 2a8-3 B —ab
8.2 8bt
(=3p°¢)"
o (2¢%) 7"

= (-3°¢)" (2-1p°)

= (-3p%°)" 2p°

= (-32(")° (") 2°
9p¥252 . 2
18p6q10p3

— 18p5T3410 — 18,9410

n

_ 1
applya™ " = s
apply (ab)" = a"b"

nm

apply (a")" =a

n

_ 1
apply a™" = P

n—m

a
apply g =a

n

1
apply ¢ =1 and il

2

apply (ab)" = a"b

m nm

apply (a")" =a

apply a" -a™ = a"t"
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3,0,.-5\ —2
30, (_y)
Y

Solution:

$3y7x_5 0
31. -
Y

= (-2)2(a®)* (b9)? apply (a™)™
— 4a5~2b—62 4 IOb—12 applya no_
1
_ 10
= 4(1 bﬁ
4019 1 4q10
1 Tz T pi2

Solution: Any non-zero quantity raised to the power zero is 1. So the answer is 1.

(© Hidegkuti, Powell, 2008

Last revised: October 1, 2018



Lecture Notes

Integer Exponents

page 16

-1 -1
2. T
r ==y
Solution: This problem is very different because there are addition and subtraction involved. Because of that, we can not
simply move the expressions with negative exponents. Instead, this will be a problem involving complex fractions.
1 N 1 1 1
-1 -1 1T P
E = Z 5 +Y 5 = 331 yl = 13: yl bring fractions to the common denominator
r=2 —y~
22 2 a2 g2
1. ‘T x +x
ry ya ;/7/ "y ywy
= = = to divide is to multiply by the reciprocal
1-q2 122 Y2 22 V2 — a2 ply by p
22 y2 g2 a2 2242 o 2242 2242
2,2
x
S 3 Y 3 cancel out zy
Yy Y —x
x x xy (x . .
_ oyt 5 Y 5 = y2( +2y) factor 2 — 2 via the difference of squares theorem, cancel out z + y
1 yc - Y-
_ _my(zty) wy
y—z)(y+z) y-—u
13 (—2a72) 230 (—aba=2b™?) -3

2a2 (—2a-2b) "% ab®
Solution:

(—2@‘2)_2 b3a® (—aba‘2b_2)_3
2a2 (—2a=2b) "% ab®

E =

(_2a—2)—2 b3 (_a1+(—2)b1+(—2))*3 B

a® =1° = 1 and 2"2™ = g"t™

(—2a72) %83 (=1a~ o7 1) .

apply (zy)" ="y

2a2+1 (=2a-2b) 2

(27 @) P ) @) )

2a3 (—2a-2b) 2

nm

203 (—2) 7% (a=2) "2 b2

(=2)2a 2CDp3 (—1) P a 31D

apply (z")™ =2

(=2)"2 a3 (—1) 72 a3b?

= cancel out a* and a® and (—2) >

2a3 (—2) 2 a—2(=2)p—2

AV
- 2h—2
B (_1)*3 b3+3 B (_1)*3 b6
a 2h—2 o 2p2
bob2
(=12
b6+2 _ b8 b8

1.2 —2 2

(© Hidegkuti, Powell, 2008

2a3 (—2) "2 ath—2

apply z"z"™ = "™

n

_ 1
apply z™" = o

apply 2"z™ = "™
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b7 (—ab?)

Solution:

apply (zy)" = 2"y

)m — xnm

apply (z"

—a? (1) 0 )‘2

b (1) Pas (17)°

_a2p-1(=5) 45 —2 —a2bPab —2 N
= = a 1 mnxm _ xn m
b7 (—1) "3 a—3p2(-3) (b7 (-1 a3b6> d

g2t (=55 - 173 \ 7
= — = <_3> cancel out a3
(=1)72p7H(=6)g—3 (—1)""bla—3
—1° \ 7’ 1
= = > apply a™" = —
=07 @
-2 _ _
_ _1(_1)3b5 _ (1= b\ — 17[)5 i appl i =g
- oL - bl —\ B PP o
1N —2 -2 m nm
() "= () apply (2")" =2

35 (x—z)—Q 320 (_nyoy—2$—2)0
 yad (y %) 0 (20 yad)
Solution:
(a:*2)72 320 ( Qymoyfzxq)o

E = apply @’ =1 and a™a™ = a
ya® (y—2z) 0 <2x—1ya:3> PPy

)

n+m

apply (ab)" = a"b"

yad (y—2z) "> (20— 1+3y) !
(= 2) v’ n T
= apply (ab)" = a"b" and a"a™ = o™
5 —3 (9,2
yzd (y=2)~° (296 )
)
= O @ wly (@)=
—2(-2),3 4,3
_ x Yy _ 'y n.m __ _n+tm
T a2y 292120y T 2 lyp2y 621 apply a”a™ = a
4,3 4,3 n
= vy — 2 =1land = = "™
2Lyl t6+(-1)52+(=2) — 2-14640 am
36 4, -3
Ty Ty _ 1
= 9-1 - 9—1 applya "= ain
2zt 274
S

For more documents like this, visit our page at https://teaching.martahidegkuti.com and click on Lecture Notes. E-mail ques-
tions or comments to mhidegkuti@ccc.edu.
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