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Part 1 - The History Thus Far and the Problem

Recall what we know about exponentiation thus far. Exponential notation expresses repeated multiplication.

.
De�nition: We de�ne 27 to denote the factor 2 multiplied by itself repeatedly, such as

2 � 2 � 2 � 2 � 2 � 2 � 2| {z }
7 factors

= 27

When mathematicians agreed to this de�nition, that was a free choice. They could have gone with other de�nitions. Once this
de�nition exists, however, certain properties are automatically true, and we have no other option but to recognize them as true.
They just fell into our laps.

.
Theorem 1. If a is any number andm, n are any positive integers, then an � am = an+m

Theorem 2. If a is any non-zero number andm, n are any positive integers, then
an

am
= an�m

Theorem 3. If a is any number andm, n are any positive integers, then (an)m = anm

Theorem 4. If a; b are any numbers and n is any positive integer, then (ab)n = anbn

Theorem 5. If a; b are any numbers, b 6= 0, and n is any positive integer, then
�a
b

�n
=
an

bn

Again, the de�nition, immediately followed by the theorems. And then there was a quiet. Another opening for a free choice.

Consider the expression 2x. The problem is that the de�nition of exponentiation only allows for a positive integer value of x.
The expression 2x is meaningful for x = 2 or 9 or 100, but it is not meaningful for values of x such as �3 or 3

5
or 3:2. In short,

the world of exponents was just the set of all natural numbers. Mathematicians usually don't like that. The best case scenario,
the ultimate hope is that the de�nition of exponents could be extended to any number for x. That way, 2x would be meaningful,
no matter what the value of x is.

So, one of the issues was the desire to grow our world of exponents beyond the set of all natural numbers. This will be achieved
in several steps. Today, we are only focusing on enlarging the world of exponents from N to Z (i.e. from the set of all natural
numbers to the set of all integers).

The other issue was that as we enlarge our world, we pay especial attention that the new de�nitions will not con�ict with the
mathematics we already have. This principle comes up often in our choices, and it is sometimes called the expansion principle.

.
De�nition: In many situations, mathematicians attempt to increase, to enlarge our world. The expansion

principle is that when we enlarge our mathematics by adding new de�nitions, we do so in
such a way that the new de�nitions never create con�icts with the mathematics we already
have.

c
 Hidegkuti, Powell, 2008 Last revised: October 1, 2018



Lecture Notes Integer Exponents page 2

Part 2 - Integer Exponents

Suppose we want to de�ne 20. The repeated multiplication de�nition can not be applied to zero, so we have complete freedom

to de�ne 20. As it turns out, if we insist on a de�nition that does not con�ict with Rule 2,
an

am
= an�m, then we do not have all

that many choices for 20. Let us think of zero as the result of the subtraction 3� 3, and that we would like to de�ne 20 so that
Rule 2 is still true.

20 = 23�3
rule 2
=

23

23
=
8

8
= 1

This is an expansion principle proof. It did not prove that the value of 20 is or must be zero. It showed much less; that if we
wanted to de�ne 20 without harming Rule 2 in the example given, then the only possible value for 20 is 1. The reader should
imagine a team of mathematicians making �rst sure that no part of our good old math is hurt if we de�ne 20 = 1. And as it
turned out, this is exactly the case.

This computation can be repeated with many different bases. For example,

50 = 52�2
rule 2
=

52

52
=
25

25
= 1 or (�3)0 = (�3)2�2 rule 2

=
(�3)2

(�3)2
=
9

9
= 1

The only base that is problematic is 0. Indeed, division by zero is not allowed and Rule 2,
an

am
= an�m does not work with

a = 0. If we try to perform the same computation with zero, we ultimately end up in
0

0
which is unde�ned.

.
Theorem 6. If a is any non-zero number, then a0 = 1.

00 is unde�ned.

Please note that as we extend our world of exponents, old issues might re-surface. For example, (�3)0 = 1 but �30 = �1 is
an important distinction, but not a new one.

Now that we have de�ned zero exponent, we will similarly try to de�ne negative integer exponents such as 2�3.

Again, the original de�nition can not be applied. We cannot write down the factor two negative three times. So we have a
freedom here to de�ne 2�3 in any way we wish. In this decision, we will again use the expansion principle: that we would like
to keep our old rules after having 2�3 de�ned.

We will again use Rule 2,
an

am
= an�m and write �3 as a subtraction between two positive integers.

2�3 = 21�4
Rule 2
=

21

24
=
2

16
=
1

8
=
1

23
or, more elegantly, 2�3 = 21�4 Rule 2

=
21

24
=

/2
/2 � 2 � 2 � 2 =

1

23

When we discovered this rule, we saw that it was true because of cancellation. In case of a negative exponent, we have the same
cancellation, it's just that we run out of factors in the numerator �rst. The computation can be repated with any base except for
zero.

.
Theorem 7. If a is any non-zero number, and n is any positive integer, then a�n =

1

an
.

0�n is unde�ned.
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Example 1. Simplify each of the following expressions. Use only positive exponents in your answer.

a) 5�2 b) a�5 c)
1

3�2
d)
�
2

3

��3
e)

1

x�3
f) 2x�3

Solution: a) Recall our new rule, a�n =
1

an
. We apply this rule: 5�2 =

1

52
=

1

25
.

b) We can use the same rule again: a�5 =
1

a5
.

c) In this case, the expression with the negative exponent is in the denominator.

The short story is that
1

3�2
= 32 = 9. The long story is that we apply our new rule a�n =

1

an
and then we

divide by mutiplying by the reciprocal.

1

3�2
=

1
1

32

=

1

1
1

32

=
1

1
� 3

2

1
=
9

1
= 9

So,
1

a�n
can be re-written as an.

d) In this case, the expression with the negative exponent is already a fraction.

The short story is that
�
2

3

��3
=

�
3

2

�3
=
27

8
. The long story is that we apply our new rule a�n =

1

an
and

then we divide by mutiplying by the reciprocal.�
2

3

��3
=

1�
2

3

�3 =
1

1
8

27

=
1

1
� 27
8
=
27

8

This computation shows that
�a
b

��n
=

�
b

a

�n
.

e) The short story is that
1

a�n
can be re-written as an. The computation below justi�es this step.

1

x�3
=

1
1

x3

=

1

1
1

x3

=
1

1
� x

3

1
=
x3

1
= x3

So,
1

a�n
can be re-written as an.

f) It is a common mistake to interpret 2x�3 as (2x)�3. Without the parentheses, we perform the exponentiation
before the multiplication. Therefore, the correct computation is

2x�3 = 2 � x�3 = 2

1
� 1
x3
=

2

x3
.
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.
Theorem: The following statements are practical applications of the rule a�n =

1

an
and frequently

occur in computations.
1

a�n
= an and

�a
b

��n
=

�
b

a

�n

Proof : As the computation shows, we apply the rule a�n =
1

an
and then perform the division by multiplying by the reciprocal.

1

a�n
=

1
1

an

=

1

1
1

an

=
1

1
� a

n

1
=
an

1
= an and

�a
b

��n
=

1�a
b

�n =
1

1
an

bn

=
1

1
� b
n

an
=
bn

an
=

�
b

a

�n
� (end of proof )

Example 2. Re-write the expression
a3b�5

c�2d4
using only positive exponents.

Solution: We re-write the expressions with negative exponents using the rule a�n =
1

an
.

a3b�5

c�2d4
=
a3 � 1

b5
1

c2
� d4

=

a3

1
� 1
b5

1

c2
� d

4

1

=

a3

b5

d4

c2

=
a3

b5
� c
2

d4
=

a3c2

b5d4
.

Notice the pattern here. If a factor with a negative exponent is in the numerator, we can re-write it with a positive exponent in
the denominator. Also, if a factor with a negative exponent is in the denominator, we can re-write it with a positive exponent in
the numerator.

.
Theorem:

a�nbm

cpd�q
=
bmdq

ancp
where a; c; d are any non-zero numbers and n,m, p, q are positive integers.

The de�nitions of a0 and a�n were developed with the intention that the previous rules (1 through 5) will remain true. Keep
that in mind in case of computations with more complex exponential expressions.
Example 3. Simplify each of the given expressions. Present your answer using only positive exponents.

a)
�
a�2
��5 b)

�
�x�2

��3
x�6 (�x)�4

c)
a�3

a�8
d)
a�2b�3

a�5b3
e)
�
2a�4b3

��5
(3a3b�2)0

Solution: a) It is much preferred to �rst simplify the exponent. Repeated exponentiation means multiplication in the exponent.�
a�2
��5

= a�2(�5) = a10

b) Let us re-write the solo negative signs as multiplications by �1. Then we will use the rules of exponents to
simplify the exponents. Only after that will we address negative exponents.�

�x�2
��3

x�6 (�x)�4
=

�
�1 � x�2

��3
x�6 (�1 � x)�4

=
(�1)�3

�
x�2

��3
x�6 (�1)�4 x�4

=
(�1)�3 x6

x�6 (�1)�4 x�4

Now we get rid of all negative exponents by moving the factors. A factor with exponent �5 in the numerator can
be re-written as a factor with exponent 5 in the denominator, and vica versa.

(�1)�3 x6

x�6 (�1)�4 x�4
=
(�1)4 x6x6x4

(�1)3
=
1 � x16
�1 = �x16
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c) Solution 1: apply the rule
an

am
= an�m.

a�3

a�8
= a�3�(�8) = a�3+8 = a5

Solution 2: First we get rid of negative exponents and then apply the rule
an

am
= an�m.

a�3

a�8
=
a8

a3
= a8�3 = a5

d) First we get rid of negative exponents.

a�2b�3

a�5b3
=

a5

a2b3b3
=

a5

a2b6
=
a3

b6

e) We can save a lot of work by noticing that the denominator is just 1; because any non-zero quantity raised to the
power zero is 1, and so

�
3a3b�2

�0
= 1.�

2a�4b3
��5

(3a3b�2)0
=
2�5

�
a�4
��5 �

b3
��5

1
=
2�5a20b�15

1
=

a20

25b15
=

a20

32b15

Part 3 - Scienti�c Notation Revisited

When we �rst saw scienti�c notation, we learned to use it to handle uncomfortbly large numbers.

Recall the de�nition of scienti�c notation:
.
De�nition: We can write numbers in scienti�c notation. This means to write a number as a product of

two numbers. The �rst number is between 1 and 10 (can be 1 but must be less than 10), and
the second number is a 10�power. For example, the scienti�c notation for
428 600 000 000 is 4:286� 1011.

With negative exponents, we can also use scienti�c notation to handle extremely small numbers. For example, the mass of an
electron is 0:00000000000000000000000000091094 grams. Instead of hurds of trailing zeroes, now we are faced with many
zeroes after the decimal point. This number can be re-written as 9: 109 4 � 10�28.

Example 4. Re-write the number 0:0000000317 using scienti�c notation.

Solution: The �rst number in scienti�c notation needs to be between 1 and 10. In this case, this number is 3:17. We just
need to �gure out the 10�power in the second part. We count how many decimal places we move the decimal from
0:0000000317 to 3:17. We count 8 decimal places. So the correct answer is 3:17 � 10�8 .

Example 5. Suppose that A = 3:8 � 1015 and B = 6:5 � 10�8. Perform each of the following operations. Present your answer
using scienti�c notation.

a) B2 b) AB2 c)
B

A

Solution: a) We will apply rules of exponents.

B2 =
�
6:5 � 10�8

�2
= 6:52 �

�
10�8

�2
= 42:25 � 10�16

This number is not in scienti�c notation because 42:25 is too large for the �rst part of scienti�c notation. Recall
that the �rst factor must be between 1 and 10. So we re-write 42:25 as 4:225 � 10.

B2 = 42:25 � 10�16 = 4:225 � 10 � 10�16 = 4:225 � 101+(�16) = 4:225 � 10�15
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b) We will apply rules of exponents.

AB2 =
�
3:8 � 1015

� �
6:5 � 10�8

�2
= 3:8 � 1015 � 6:52 �

�
10�8

�2
= 3:8 � 1015 � 42:25 � 10�16

= (3:8 � 42:25) �
�
1015 � 10�16

�
= 160: 55 � 1015+(�16) = 160: 55 � 10�1 = 16:055

This number is not in scienti�c notation because 16:055 is too large for the �rst part of scienti�c notation.

AB2 = 16:055 = 1:6055 � 10 .

c)
B

A
=
6:5 � 10�8
3:8 � 1015 =

�
6:5

3:8

�
� 10�8�15 = 1: 710 5 � 10�23 .

Sample Problems

Simplify each of the following. Assume that all variables represent positive numbers. Present your answer without negative
exponents.

1. 3�2

2.
1

2�3

3. m�4

4.
1

x�5

5. a8 � a�1

6. p3
�
p�7
�
p8

7.
x�4

x�9

8.
50a12

10a�3

9.
t�3

t4

10. x0

11. �x0

12. (�x)0

13.
�
b�5
� �
b2
� �
b�1
�

14.
1

(b�5) (b2) (b�1)

15.
m�2

m�5

16.
x3y�5

z�4

17.
18q3

6q�3

18.
�
2

3

��3
19. 2y�3

20. (2y)�3

21.
�
�3
5

��2

22.
a3b�5

a�2b3

23.
�
3m3

��2
24.

�
�2ab�3

��3
25.

�
k3
��3

(k�5)2

26.
�
2a�3b5

�3a3b�2

��2 �
a3b�5

��3
27.

�
�2a�3

� �
�2a�2b

��4
28.

�
�3p3q5

�2
(2q0p3)�1

29.
�

2a�2b3

�22 (a�1b)�3

��2

30.
�
�x

3y0x�5

y�3

��2

31.
�
�x

3y7x�5

y�3

�0

32.
x�1 + y�1

x�2 � y�2

33.
�
�2a�2

��2
b3a0

�
�aba�2b�2

��3
2a2 (�2a�2b)�2 ab0

34.

 
�a2

�
b�1a

��5
b7 (�ab2)�3

!�2

35.
�
x�2

��2
y3x0

�
�2yx0y�2x�2

�0
yx5 (y�2x)�3 (2x�1yx3)�1

36. Suppose that x = 8:5 � 10�12 and y = 7:5 � 107. Perform each of the following operations. Present your answer using
scienti�c notation.

a) xy b) x3 c) xy2 d)
x

y
e)

y

x5
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Answers

Sample Problems

1.
1

9
2. 8 3.

1

m4
4. x5 5. a7 6. p4 7. x5 8. 5a15 9.

1

t7
10. 1

11. �1 12. 1 13.
1

b4
14. b4 15. m3 16.

x3z4

y5
17. 3q6 18.

27

8
19.

2

y3

20.
1

8y3
21.

25

9
22.

a5

b8
23.

1

9m6
24. � b9

8a3
25. k 26.

9

4
a3b 27. � a

5

8b4

28. 18p9q10 29.
4a10

b12
30.

x4

y6
31. 1 32.

xy

y � x 33.�b
8

2
34.

1

b8
35.

2x4

y3

36. a) 6: 375 � 10�4 b) 6: 141 3 � 10�34 c) 4:7813 � 104 d) 1: 133 3 � 10�19 e) 1: 690 3 � 1063

c
 Hidegkuti, Powell, 2008 Last revised: October 1, 2018



Lecture Notes Integer Exponents page 8

Sample Problems - Solutions

Simplify each of the following. Assume that all variables represent positive numbers. Present your answer without negative
exponents.

1. 3�2

Solution: We just apply the rule a�n =
1

an
.

3�2 =
1

32
=
1

9

2.
1

2�3

Solution: We apply the rule a�n =
1

an
.

1

2�3
=

1
1

23

=
1
1

8

To divide is to multiply by the reciprocal:
1
1

8

= 1 � 8
1
= 8

This is true in general:
1

a�n
= an

1

a�n
=

1
1

an

= 1 � a
n

1
= an

3. m�4

Solution: We apply the rule a�n =
1

an
.

m�4 =
1

m4

4.
1

x�5

Solution: We have already proven that
1

a�n
= an

1

x�5
= x5

5. a8 � a�1

Solution 1: We can apply the rule an � am = an+m

a8 � a�1 = a8+(�1) = a7
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Solution 2: We can apply the rule a�n =
1

an
and then the rule

an

am
= an�m.

a8 � a�1 = a8 � 1
a1
=
a8

1
� 1
a
=
a8

a
=
a8

a1
= a8�1 = a7

6. p3
�
p�7
�
p8

Solution 1: We can apply the rule an � am = an+m

p3
�
p�7
�
p8 = p3+(�7)+8 = p4

Solution 2: We can apply the rules a�n =
1

an
and an � am = an+m and a

n

am
= an�m.

p3
�
p�7
�
p8 = p3 � 1

p7
� p8 = p3

1
� 1
p7
� p

8

1
=
p3 � p8
p7

=
p3+8

p7
=
p11

p7
= p11�7 = p4

7.
x�4

x�9

Solution 1: We can apply the rule
an

am
= an�m.

x�4

x�9
= x�4�(�9) = x�4+9 = x5

Solution 2: We can apply the rules a�n =
1

an
and

an

am
= an�m.

x�4

x�9
=
x9

x4
= x9�4 = x5

8.
50a12

10a�3

Solution 1: We can apply the rule
an

am
= an�m.

50a12

10a�3
= 5a12�(�3) = 5a12+3 = 5a15

Solution 2: We can apply the rules a�n =
1

an
and

an

am
= an�m.

50a12

10a�3
=
50a12a3

10
= 5a12+3 = 5a15

9.
t�3

t4

Solution 1: We can apply the rules
an

am
= an�m and then a�n =

1

an
.

t�3

t4
= t�3�4 = t�7 =

1

t7
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Solution 2: We can apply the rule a�n =
1

an
and then an � am = an+m.

t�3

t4
=

1

t4 � t3 =
1

t7

10. x0

Solution: There is a separate rule stating that as long as x is not zero, then x0 = 1. So the answer is 1.

11. �x0

Solution: This is the opposite of x0 and so the answer is �1.

�x0 = �1 � x0 = �1 � 1 = �1

12. (�x)0

Solution: This is again 1 because any non-zero riased to the power zero is 1.

13.
�
b�5
� �
b2
� �
b�1
�

Solution 1: We can apply the rules an � am = an+m and then a�n = 1

an
.

�
b�5
� �
b2
� �
b�1
�
= b�5+2+(�1) = b�4 =

1

b4

Solution 2: We can apply the rule a�n =
1

an
and then just cancel.

�
b�5
� �
b2
� �
b�1
�
=
1

b5
� b2 � 1

b1
=
1

b5
� b
2

1
� 1
b1
=
b2

b6
=

/b � /b
/b � /b � b � b � b � b =

1

b4

14.
1

(b�5) (b2) (b�1)

Solution 1: We can apply the rules an � am = an+m and then a�n = 1

an
.

1

(b�5) (b2) (b�1)
=

1

b�5+2+(�1)
=

1

b�4
=

1
1

b4

= 1 � b
4

1
= b4

Solution 2: We can apply the rule a�n =
1

an
and then

an

am
= an�m.

1

(b�5) (b2) (b�1)
=
b5 � b1
b2

=
b6

b2
= b6�2 = b4

15.
m�2

m�5

Solution 1: We can apply the rules
an

am
= an�m and then a�n =

1

an
.

m�2

m�5 = m
�2�(�5) = m�2+5 = m3
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Solution 2: We can apply the rule a�n =
1

an
and then

an

am
= an�m.

m�2

m�5 =
m5

m2
= m5�2 = m3

16.
x3y�5

z�4

Solution: Each variable occurs only once and so this problem is just about bringing it to the form required. We can apply
the rule a�n =

1

an
. We hve alread shown that

1

a�n
= an.

x3y�5

z�4
=
x3z4

y5

17.
18q3

6q�3

Solution 1: We can apply the rule
an

am
= an�m.

18q3

6q�3
=
/6 � 3q3�(�3)

/6 � 1 =
3q3+3

1
= 3q6

Solution 2: We can apply the rules a�n =
1

an
and then an � am = an+m.

18q3

6q�3
=
/6 � 3q3q3
/6 � 1 = 3q6

18.
�
2

3

��3
Solution: We can apply the rule a�n =

1

an
.

�
2

3

��3
=

1�
2

3

�3 = 1
2

3
� 2
3
� 2
3

=
1
8

27

= 1 � 27
8
=
27

8

Note that we basically proved here that
�a
b

��n
=

�
b

a

�n
.

19. 2y�3

Solution: We can apply the rule a�n =
1

an
. It is important to note that the base of exponentiation is y and not 2y.

2y�3 = 2 � 1
y3
=
2

1
� 1
y3
=
2

y3
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20. (2y)�3

Solution: We can apply the rule a�n =
1

an
. This time the base of exponentiation is 2y. So we will apply the rule

(ab)n = anbn.

(2y)�3 =
1

(2y)3
=

1

23y3
=

1

8y3

21.
�
�3
5

��2
Solution 1: We can apply the rule a�n =

1

an
.

�
�3
5

��2
=

1�
�3
5

�2 = 1�
�3
5

��
�3
5

� = 1
�3
5
� �3
5

=
1
9

25

= 1 � 25
9
=
25

9

Solution 2: We proved previously that
�a
b

��n
=

�
b

a

�n
. Using that,

�
�3
5

��2
=

�
�5
3

�2
=

�
�5
3

��
�5
3

�
=
25

9

22.
a3b�5

a�2b3

Solution 1: We can apply the rule
an

am
= an�m and then a�n =

1

an
.

a3b�5

a�2b3
= a3�(�2)b�5�3 = a3+2b�5�3 = a5b�8 = a5 � 1

b8
=
a5

1
� 1
b8
=
a5

b8

Solution 2: We can apply the rules a�n =
1

an
and an � am = an+m.

a3b�5

a�2b3
=
a3a2

b3b5
=
a5

b8

23.
�
3m3

��2
Solution: We can apply the rule a�n =

1

an
and then (ab)n = anbn and also (an)m = anm.

�
3m3

��2
=

1

(3m3)2
=

1

32 (m3)2
=

1

9m3�2 =
1

9m6

24.
�
�2ab�3

��3
Solution: We can apply the rule (ab)n = anbn and then (an)m = anm.�

�2ab�3
��3

= (�2)�3 a�3
�
b�3
��3

= (�2)�3 a�3b�3(�3) = (�2)�3 a�3b9

c
 Hidegkuti, Powell, 2008 Last revised: October 1, 2018



Lecture Notes Integer Exponents page 13

We now apply a�n =
1

an
.

(�2)�3 a�3b9 = 1

(�2)3
� 1
a3
� b9 = 1

�8 �
1

a3
� b
9

1
=

b9

�8a3 = �
b9

8a3

25.
�
k3
��3

(k�5)2

Solution: We can apply the rule (an)m = anm and then
an

am
= an�m.

�
k3
��3

(k�5)2
=
k3(�3)

k�5�2
=
k�9

k�10
= k�9�(�10) = k�9+10 = k1 = k

26.
�
2a�3b5

�3a3b�2

��2 �
a3b�5

��3
Solution:

E =

�
2a�3b5

�3a3b�2

��2 �
a3b�5

��3
=

 
2a�3�3b5�(�2)

�3

!�2 �
a3b�5

��3 apply
an

am
= an�m

=

�
2a�6b5+2

�3

��2 �
a3b�5

��3
=

�
2a�6b7

�3

��2 �
a3b�5

��3 apply
�a
b

��n
=

�
b

a

�n
=

�
�3

2a�6b7

�2 �
a3b�5

��3 apply
�a
b

�n
=
an

bn

=
(�3)2

(2a�6b7)2
�
a3b�5

��3 apply (ab)n = anbn and a�n =
1

an

=
9

22 (a�6)2 (b7)2
� 1

(a3b�5)3
apply (an)m = anm and (ab)n = anbn

=
9

4a�12b14
� 1

(a3)3 (b�5)3
apply a�n =

1

an
and (ab)n = anbn

=
9a12

4b14
� 1

a3�3b(�5)3

=
9a12

4b14
� 1

a9b�15
apply a�n =

1

an

=
9a12

4b14
� b
15

a9
=
9a12b15

4b14a9
apply

an

am
= an�m

=
9a12�9b15�14

4
=
9a3b1

4
=
9

4
a3b
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27.
�
�2a�3

� �
�2a�2b

��4
Solution:

E =
�
�2a�3

� �
�2a�2b

��4 apply a�n =
1

an

=

�
�2 � 1

a3

�
1

(�2a�2b)4
apply (ab)n = anbn

=

�
�2
1
� 1
a3

�
1

(�2)4 (a�2)4 b4
apply (an)m = anm

=
�2
a3
� 1

16a�8b4
apply a�n =

1

an

=
�2
a3
� a

8

16b4

=
�2a8
a3 � 16b4 =

�2a8
16a3b4

apply
an

am
= an�m

=
�1 � /2a8�3
8 � /2b4 =

�a5
8b4

28.
�
�3p3q5

�2
(2q0p3)�1

Solution:

E =

�
�3p3q5

�2
(2q0p3)�1

apply q0 = 1 and
1

a�n
= an

=
�
�3p3q5

�2 �
2 � 1p3

�1
=

�
�3p3q5

�2 � 2p3 apply (ab)n = anbn

= (�3)2
�
p3
�2 �

q5
�2 � 2p3 apply (an)m = anm

= 9p3�2q5�2 � 2p3

= 18p6q10p3 apply an � am = an+m

= 18p6+3q10 = 18p9q10

29.
�

2a�2b3

�22 (a�1b)�3

��2
Solution:

E =

�
2a�2b3

�22 (a�1b)�3

��2
apply

�a
b

��n
=

�
b

a

�n

=

 
�22

�
a�1b

��3
2a�2b3

!2
apply (ab)n = anbn

=

 
�4
�
a�1
��3

b�3

2a�2b3

!2
apply (an)m = anm
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=

 
�4a�1(�3)b�3
2a�2b3

!2

=

�
�2a3b�3
a�2b3

�2
apply

an

am
= an�m

=
�
�2a3�(�2)b�3�3

�2
=

�
�2a3+2b�3�3

�2
=

�
�2a5b�6

�2 apply (ab)n = anbn

= (�2)2
�
a5
�2 �

b�6
�2 apply (an)m = anm

= 4a5�2b�6�2 = 4a10b�12 apply a�n =
1

an

= 4a10 � 1
b12

=
4a10

1
� 1
b12

=
4a10

b12

30.
�
�x

3y0x�5

y�3

��2
Solution:

E =

�
�x

3y0x�5

y�3

��2
y0 = 1 and an � am = an+m

=

 
�x

3+(�5)

y�3

!�2
=

�
�1x�2
y�3

��2
apply

�a
b

�n
=
an

bn

=

�
�1x�2

��2
(y�3)�2

apply (ab)n = anbn

=
(�1)�2

�
x�2

��2
(y�3)�2

apply (an)m = anm and a�n =
1

an

=
x�2(�2)

(�1)2 y�3(�2)
=
x4

1y6
=
x4

y6

31.
�
�x

3y7x�5

y�3

�0
Solution: Any non-zero quantity raised to the power zero is 1: So the answer is 1.
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32.
x�1 + y�1

x�2 � y�2

Solution: This problem is very different because there are addition and subtraction involved. Because of that, we can not
simply move the expressions with negative exponents. Instead, this will be a problem involving complex fractions.

E =
x�1 + y�1

x�2 � y�2 =

1

x1
+
1

y1

1

x2
� 1

y2

=

1

x
+
1

y
1

x2
� 1

y2

bring fractions to the common denominator

=

1 � y
x � y +

1 � x
y � x

1 � y2
x2 � y2 �

1 � x2
y2 � x2

=

y

xy
+
x

xy

y2

x2y2
� x2

x2y2

=

y + x

xy

y2 � x2
x2y2

to divide is to multiply by the reciprocal

=
y + x

xy
� x2y2

y2 � x2 cancel out xy

=
y + x

1
� xy

y2 � x2 =
xy (x+ y)

y2 � x2 factor y2 � x2 via the difference of squares theorem, cancel out x+ y

=
xy (x+ y)

(y � x) (y + x) =
xy

y � x

33.
�
�2a�2

��2
b3a0

�
�aba�2b�2

��3
2a2 (�2a�2b)�2 ab0

Solution:

E =

�
�2a�2

��2
b3a0

�
�aba�2b�2

��3
2a2 (�2a�2b)�2 ab0

a0 = b0 = 1 and xnxm = xn+m

=

�
�2a�2

��2
b3
�
�a1+(�2)b1+(�2)

��3
2a2+1 (�2a�2b)�2

=

�
�2a�2

��2
b3
�
�1a�1b�1

��3
2a3 (�2a�2b)�2

apply (xy)n = xnyn

=
(�2)�2

�
a�2
��2

b3 (�1)�3
�
a�1
��3 �

b�1
��3

2a3 (�2)�2 (a�2)�2 b�2
apply (xn)m = xnm

=
(�2)�2 a�2(�2)b3 (�1)�3 a�1(�3)b�1(�3)

2a3 (�2)�2 a�2(�2)b�2
=
(�2)�2 a4b3 (�1)�3 a3b3

2a3 (�2)�2 a4b�2
cancel out a4 and a3 and (�2)�2

=
b3 (�1)�3 b3

2b�2
apply xnxm = xn+m

=
(�1)�3 b3+3

2b�2
=
(�1)�3 b6
2b�2

apply x�n =
1

xn

=
b6b2

(�1)3 2
apply xnxm = xn+m

=
b6+2

�1 � 2 =
b8

�2 = �
b8

2
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34.

 
�a2

�
b�1a

��5
b7 (�ab2)�3

!�2
Solution:

E =

 
�a2

�
b�1a

��5
b7 (�ab2)�3

!�2
apply (xy)n = xnyn

=

 
�a2

�
b�1
��5

a�5

b7 (�1)�3 a�3 (b2)�3

!�2
apply (xn)m = xnm

=

 
�a2b�1(�5)a�5

b7 (�1)�3 a�3b2(�3)

!�2
=

�
�a2b5a�5

b7 (�1)�3 a�3b�6

��2
apply xnxm = xn+m

=

 
�a2+(�5)b5

(�1)�3 b7+(�6)a�3

!�2
=

�
�1 � a�3b5

(�1)�3 b1a�3

��2
cancel out a�3

=

�
�1b5

(�1)�3 b1

��2
apply a�n =

1

an

=

 
�1 (�1)3 b5

b1

!�2
=

�
�1 (�1) b5

b1

��2
=

�
1b5

b1

��2
apply

xn

xm
= xn�m

=
�
b5�1

��2
=
�
b4
��2 apply (xn)m = xnm

= b4(�2) = b�8 =
1

b8

35.
�
x�2

��2
y3x0

�
�2yx0y�2x�2

�0
yx5 (y�2x)�3 (2x�1yx3)�1

Solution:

E =

�
x�2

��2
y3x0

�
�2yx0y�2x�2

�0
yx5 (y�2x)�3 (2x�1yx3)�1

apply a0 = 1 and anam = an+m

=

�
x�2

��2
y3

yx5 (y�2x)�3 (2x�1+3y)�1
apply (ab)n = anbn

=

�
x�2

��2
y3

yx5 (y�2)�3 x�3 (2x2y)�1
apply (ab)n = anbn and anam = an+m

=

�
x�2

��2
y3

yx5+(�3) (y�2)�3 (2)�1 (x2)�1 y�1
apply (an)m = anm

=
x�2(�2)y3

yx2y�2(�3)2�1x2(�1)y�1
=

x4y3

2�1yx2y6x�2y�1
apply anam = an+m

=
x4y3

2�1y1+6+(�1)x2+(�2)
=

x4y3

2�1y6x0
x0 = 1 and

an

am
= an�m

=
x4y3�6

2�1
=
x4y�3

2�1
apply a�n =

1

an

=
21x4

y3
=
2x4

y3

For more documents like this, visit our page at https://teaching.martahidegkuti.com and click on Lecture Notes. E-mail ques-
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