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Part 1 - The History Thus Far

Recall what we know about exponentiation thus far. Exponential notation was �rst de�ned to express repeated multiplication.

.
De�nition: We de�ne 27 to denote the factor 2 multiplied by itself repeatedly, such as

2 � 2 � 2 � 2 � 2 � 2 � 2| {z }
7 factors

= 27

When mathematicians agreed to this de�nition, that was a free choice. Once this de�nition was accepted, certain properties
are automatically true, and we had no other option but to recognize them as true. They just fell into our laps, or, as we say,
they are consequence of the de�nition.

.
Theorem 1. If a is any number andm, n are any positive integers, then an � am = an+m

Theorem 2. If a is any non-zero number andm, n are any positive integers, then
an

am
= an�m

Theorem 3. If a is any number andm, n are any positive integers, then (an)m = anm

Theorem 4. If a; b are any numbers and n is any positive integer, then (ab)n = anbn

Theorem 5. If a; b are any numbers, b 6= 0, and n is any positive integer, then
�a
b

�n
=
an

bn

Consider the expression 2x. The problem was that the de�nition of exponentiation only allows for a positive integer value
of x. The expression 2x was meaningful for x = 2 or 9 or 100, but not for values of x such as �3 or 3

5
or 3:2. In short,

the world of exponents was just the set of all natural numbers. Mathematicians usually don't like that. The best case
scenario, the ultimate hope is that the de�nition of exponents could be extended to any number for x. That way, 2x would
be meaningful, no matter what the value of x is.

In the past, we had looked at how mathematicians extended exponential notation from the set of natural numbers (N) to the
set of all integers, (Z). They de�ned zero- and negative exponent in such a way so that the rules listed above still worked.
Recall that this principle is called the expansion principle.

.
De�nition: Mathematicians often try to enlarge our world, in other words, to generalize de�nitions and
rules to a larger set. The expansion principle is that when we enlarge our mathematics, we do so in such
a way that the new de�nitions never create con�icts with the mathematics we already have.

As it turned out, the demand to preserve the rule of exponents allowed only one possible de�nition when we stepped out
from N to Z.

As we stepped out to integer exponents, we insisted on a de�nition that does not con�ict with Rule 2,
an

am
= an�m. Then

there was only one possible choice for 20.

20 = 23�3
rule 2
=

23

23
=
8

8
= 1
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The same idea gave us just one possible interpretation for 2�3.

2�3 = 21�4
Rule 2
=

21

24
=
2

16
=
1

8
=
1

23
or, more elegantly, 2�3 = 21�4 Rule 2

=
21

24
=

/2
/2 � 2 � 2 � 2 =

1

23

So, here we are at this point: exponentiation is de�ned for all integer exponents, and

.
Theorem 1. If a is any number andm, n are any positive integers, then an � am = an+m

Theorem 2. If a is any non-zero number andm, n are any positive integers, then
an

am
= an�m

Theorem 3. If a is any number andm, n are any positive integers, then (an)m = anm

Theorem 4. If a; b are any numbers and n is any positive integer, then (ab)n = anbn

Theorem 5. If a; b are any numbers, b 6= 0, and n is any positive integer, then
�a
b

�n
=
an

bn

Theorem 6. If a is any non-zero number, then a0 = 1.

00 is unde�ned.

Theorem 7. If a is any non-zero number, and n is any positive integer, then a�n =
1

an
.

0�n is unde�ned.

Next, mathematicians hoped to extend exponential notation for all rational numbers, and then perhaps for all real numbers.
That way, the expression 2x would be meaningful for every real number x.

Part 2 - Rational Exponents

Today we are going to see how exponential notation can be extended to rational numbers. The driving principle here was
also the expansion principle, but this time with a focus on rule 3, (an)m = anm. We also had to make some compromises in
order to keep mathematical properties that are important for us.

Consider 51=3. At this point, this expression has no meaning, as the de�nition, repeated multiplication can not be applied.
We have the freedom to de�ne 51=3 any way we like. Let us denote 51=3 by x for now.

5
1
3 = x

Considering the rule (an)m = anm, there is a good reason for us to want to raise 51=3 to the third power.�
5
1
3

�3
= (5)

1
3 �3 = 51 = 5

This means that if we want to de�ne 51=3 in a way so that the rule (an)m = anm will still work, then 51=3 must be a number
that, when raised to third power, the result is 5.
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5
1
3 = x raise to the 3rd power�

5
1
3

�3
= x3

5 = x3

There is one number that does that, and we denote it by 3
p
x. Recall the de�nition of 3

p
x: it is the number, that, when raised

to the third power, we get x.

Similarly, if we want to de�ne 51=2, the rule (an)m = anm demands that 51=2 is a number that, when squared, the result is 5.

�
5
1
2

�2
= (5)

1
2 �2 = 51 = 5

So, if we denote 51=2 by y, we have that

5
1
2 = y�

5
1
2

�2
= y2

5 = y2

There are two such numbers,
p
5 and �

p
5. When we de�ned

p
5, we decided to de�ne the positive candidate as

p
5.

Similarly, it was not a dif�cult decision to go with the positive candidate, and so

5
1
2 =

p
5

Both sides square to 5. The left-hand side by the rule (an)m = anm, and the right-hand side by the de�nition of
p
5. So, we

can extend exponential notation to rational numbers in the form of a1=n with the rule (an)m = anm in mind.
.
Theorem 8. If a is any number and n is any positive integer, then a1=n = n

p
a.

There are some issues with this de�nition, but we already had them when we de�ned roots of numbers. Recall that
p
�9

and 4
p
�16 and 6

p
�1 are all expressions that can not be de�ned as real numbers, because any real number, positive or

negative, will result in a positive number when raised to an even power. Therefore, (�9)1=2 and (�16)1=4 and (�1)1=6 are
all unde�ned.

Not all rational numbers are of the form
1

n
. How would we de�ne something to the power of

2

3
? At �rst sight, this does not

seem to be a dif�cult task. We could interpret
2

3
as
1

3
� 2, and then, using the same rule (an)m = anm, we could interpret it

as two different exponentiation. Consider, for example, 82=3.

82=3 = 8(1=3)�2 =
�
81=3

�2
=
�

3
p
8
�2
= 22 = 4 or 82=3 = 82�(1=3) =

�
82
�1=3

=
3
p
82 =

3
p
64 = 4

Based on the computation above, it appears that extending exponential notation to fractions is complete, with the de�nition

an=m =

(
m
p
an

( m
p
a)
n . This is not the case. We are facing a new issue that will force us to make more dif�cult choices than
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before.

Caution! Exponential notation was de�ned in several different ways. In advanced calculus, there will be a completely
different approach to exponential notation, resulting in a different de�nition. The different de�nitions usually agree in the
results, but not always. Occasionally, the different de�nitions lead to different results!

Here is the problem. Consider (�8)4=6. The two computations shown in case of 82=3 will not work the same way.

(�8)4=6 =

8>><>>:
(�8)4�(1=6) =

�
(�8)4

�1=6
= 6

q
(�8)4 = 6

p
4096 = 4

or
(�8)(1=6)�4 =

�
6
p
�8
�4
= unde�ned because 6

p
�8 is unde�ned

This is a troubling situation. If we interpret
4

6
as 4 � 1

6
, we get a different result from when interpreting

4

6
as
1

6
� 4. What

has happened here, that in case of a non-reduced fraction, we lose our grip on handling negative bases. There is no perfect
way out of this mess.

We could de�ne an=m in such a way that we restrict the order between exponentiation ()n and taking themth root so that we
only allow one order. We could also demand that fractions be always reduced when in exponents.

In intermediate algebra, we will follow a different route. We want to keep the order between exponentiation and taking
the root �exible. We also demand that fractions behave the same way, whether they are in lowest terms or not. So, we
simply gave up on de�ning fractions as exponents with negative bases. When the base is negative, the only fraction exponent
allowed is of the form

1

n
.

.
Theorem 9. Suppose thatm and n are integers withm 6= 0 and n 6= 1.

If a is negative, then an=m is unde�ned. If a is non-negative, then an=m =

(
m
p
an

( m
p
a)
n .

This is the �rst example we saw that expanding our world came with a price. As we extended exponential notation from the
set of all integers (Z) to the set of all rational numbers (Q), we had to give up something. This de�ntion results in giving up
on negative bases (with the exception of exponent

1

n
). Other de�nitions of exponentiation are based on different decisions.
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Part 3 - Applications

Example 1. Evaluate each of the given expressions. Present your answer using only positive integer exponents.

a) 163=4 b) �251=2 c) (�25)1=2 d) (�8)1=3 e) (�27)2=3 f) 27�2=3 g)
�p
8
�2=3

Solution: a) 163=4 =
�
4
p
16
�3
= 23 = 8

b) Recall the difference between �22 and (�2)2. In the �rst case �22, we are not squaring �2. The base is 2.
We can interpret �22 as �1 � 22. So, in the case of �251=2, the base is 25:

�251=2 = �1 � 251=2 = �1 �
p
25 = �5 .

c) (�25)1=2 =
p
�25 = unde�ned because no real number has a negative square.

d) (�8)1=3 = 3
p
�8 = �2

e) (�27)2=3 = unde�ned because when the base is negative, the only fraction allowed is of the form
1

n
.

f) 27�2=3 =
1

272=3
=

1�
3
p
27
�2 = 1

32
=
1

9

g)
�p
8
�2=3

=
��p

8
�2�1=3

= 81=3 = 2

or
�p
8
�2=3

=
�
81=2

�2=3
= 8(1=2)�(2=3) = 81=3 = 3

p
8 = 2

Notice that we have the free choice to decide the order in which we perform the exponentiaton and taking the root. On
a case by case basis, one method is preferred. For example, in the case of 272=3, we took the 3rd root �rst, and then we
squared. This is because the third root is nice (i.e. integer) and the other order, while also correct, would make the numbers
unnecessarily large. In the last example, it was more advantageous to �rst exponentiate, and then take the root.

Whenever we deal with complicated exponents, we need to keep in mind that when rational exponents were de�ned, the goal
was to preserve rules of exponents. So, we can apply all rules (1-9) to these exponents.

Example 2. Simplify each of the given expressions. Present your answer using only positive integer exponents.

a) 51=3 � 51=2 b)
87=6

81=2
c)
�
642=3

�1=2 d) 21=2 � 181=2 e)
963=4

63=4

Solution: a) We will apply the �rst rule of exponents, an � am = an+m.

51=3 � 51=2 = 51=3+1=2 = 55=6 as 1
3
+
1

2
=
2

6
+
3

6
=
5

6
(printed computations look terrible in the exponents)

b) We will apply the second rule of exponents,
an

am
= an�m.

87=6

81=2
= 87=6�1=2 = 82=3 =

�
3
p
8
�2
= 22 = 4 since

7

6
� 1
2
=
7� 3
6

=
4

6
=
2

3

c) We will apply the third rule of exponents, (an)m = anm.�
642=3

�1=2
= 64(2=3)�(1=2) = 641=3 = 3

p
64 = 4 since

2

3
� 1
2
=
1

3
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d) We will apply the fourth rule of exponents, (ab)n = anbn.
21=2 � 181=2 = (2 � 18)1=2 = 361=2 =

p
36 = 2

e) We will apply the �fth rule of exponents,
�a
b

�n
=
an

bn
.

963=4

63=4
=

�
96

6

�3=4
=

�
48

3

�3=4
= 163=4 =

�
4
p
16
�3
= 23 = 8

Example 3. Simplify each of the given expressions. Present your answer using only positive integer exponents. Assume
that all variables represent positive numbers.

a)
x1=2x2=3

x1=6
b)

 
p2=3p5=3�
�p1=6

�2
!�1=2

c)

 
x2=3y�1=6

x�1=2y�1=3

!1=2

Solution: a)
x1=2x2=3

x1=6
=
x1=2+2=3

x1=6
=
x7=6

x1=6
= x7=6�1=6 = x1 = x as

1

2
+
2

3
=
3 + 4

6
=
7

6

b) We simplify the numerator and denominator �rst. 
p2=3p5=3�
�p1=6

�2
!�1=2

=

 
p2=3+5=3

p2=6

!�1=2
=

 
p7=3

p1=3

!�1=2
We now perform the division. 
p7=3

p1=3

!�1=2
=
�
p7=3�1=3

��1=2
=
�
p6=3

��1=2
=
�
p2
��1=2

We now simplify the exponent.�
p2
��1=2

= p2�(�1=2) = p�1 =
1

p

b) We �rst apply the rule
an

am
= an�m. 

x2=3y�1=6

x�1=2y�1=3

!1=2
=
�
x2=3�(�1=2)y�1=6�(�1=3)

�1=2
=
�
x7=6y1=6

�1=2
because

2

3
�
�
�1
2

�
=
4 + 3

6
=
7

6
and �1

6
�
�
�1
3

�
=
�1 + 2
6

=
1

6

We will further simplify the expression using the rules (ab)n = anbn and (an)m = anm.�
x7=6y1=6

�1=2
=
�
x7=6

�1=2 �
y1=6

�1=2
= x(7=6)�(1=2)y(1=6)�(1=2) = x7=12y1=12

We need to present this expression using only positive integer exponents. This will take a few more steps.

x7=12y1=12 =
�
x7
�1=12

(y)1=12 =
�
x7y
�1=12

= 12
p
x7y
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Rational exponents are also useful in simplifying complicated radical expressions.

Example 4. Simplify each of the given expressions. Present your answer using only positive integer exponents. Assume
that x represents a positive number.

a)
p
x 3
p
x

4
p
x3 b)

q
x

3
p
x2

4
p
x�3 c) 18

p
x12

Solution: a) We �rst re-write the radicals as exponents.
p
x = x1=2 and 3

p
x = x1=3 and 4

p
x3 = x3=4.

p
x 3
p
x

4
p
x3 = x1=2x1=3x3=4 = x(1=2)+(1=3)+(3=4) = x19=12 =

12
p
x19 as

1

2
+
1

3
+
3

4
=
6 + 4 + 9

12
=
19

12

b) We re-write the radicals as exponents.q
x

3
p
x2

4
p
x�3 =

�
x
�
x2 x�3=4

�1=3�1=2
2� 3

4
=
8� 3
4

=
5

4

=
�
x
�
x5=4

�1=3�1=2
=
�
x � x(5=4)�(1=3)

�1=2 5

4
� 1
3
=
5

12
and 1 +

5

12
=
17

12

=
�
x � x5=12

�1=2
=
�
x17=12

�1=2
= x(17=12)�(1=2) = x17=24 =

24
p
x17

c) 18
p
x12 = x12=18 = x2=3 =

3
p
x2
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Practice Problems

Simplify each of the following expressions.

1. 91=2

2. 9�1=2

3. �91=2

4. �9�1=2

5. (�9)1=2

6. 93=2

7. 81=3

8. 8�1=3

9. (�8)1=3

10. 16�3=4

11. 51=2

12. �4�5=2

13. (�32)1=5

14. 322=5

15. 361=2

16. 36�1=2

17. �361=2

18. (�36)1=2

19. (�36)�1=2

20. 36�3=2

21. �4�3=2

22. (�4)�3=2

23. (�8)1=3

24. (�8)2=3

25. �161=2

26. (�16)1=2

27. 8�2=3

28. (32)�4=5

29. (�32)�4=5

30. 81�3=4

Simplify each of the following. Present your �nal answers using positive exponents only. For example, x�2=3 =
1

3
p
x2
:

Assume that all variables represent positive numbers.

31.
�
x1=3

�6
32.

x2=5x�3=4

x�1=2

33.
�
a�1=2

��4=5
34.

�
m1=2

� �
m3=2

�
m�3

35. 3

s
x2y�1

(�x4y�2)2

36.
�
�8a6b�24

�1=3
37.

 
16x4y

2
3

36x2y2

! 3
2

38.
�
�3x�1=2y3=8x�7=2

�0
39.

�
A2=3

�3=2

40.
�
y�3=4

��8�
y�1=2

�10
Use exponential notation to simplify each of the following. Present your answer using positive integers only.

41. 8
p
x6

42.
�
6
p
y
�9

43.
�
6
p
2
�18

44. (
p
x) ( 3

p
x)

45.
5
p
x

3
p
x2

x 6
p
x

46.

srqpp
x
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Answers

1. 3 2.
1

3
3. �3 4. �1

3
5. unde�ned 6. 27 7. 2 8.

1

2
9. �2 10.

1

8
11.

p
5

12. � 1

32
13. �2 14. 4 15. 6 16.

1

6
17. �6 18. unde�ned 19. unde�ned

20.
1

216
21. �1

8
22. unde�ned 23. �2 24. unde�ned 25. �4 26. unde�ned 27.

1

4

28.
1

16
29. unde�ned 30.

1

27
31. x2 32. 20

p
x3 33. 5

p
a2 34. m5 35.

y

x2
36.

�2a2
b8

37.
8x3

27y2
38. 1 39. A 40. y11 41. 4

p
x3 42.

�p
y
�3 43. 8 44. 6

p
x5

45.
5
p
x

3
p
x2

x 6
p
x

= x

�
1
5+

2
3�

�
1+

1
6

��
= x�

3
10 =

1
10
p
x3

46.

srqpp
x =

0BBBB@
0BB@
0@�x12�12

1A
1
2

1CCA
1
2

1CCCCA
1
2

= x
1
2 �
1
2 �
1
2 �
1
2 �
1
2 = x

1
32 = 32

p
x

For more documents like this, visit our page at https://teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or
comments to mhidegkuti@ccc.edu.
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