Natural Exponents (1-5)

1. $a^{n} \cdot a^{m}=a^{n+m}$
2. $\frac{a^{n}}{a^{m}}=a^{n-m} \quad a \neq 0$
3. $\quad\left(a^{n}\right)^{m}=a^{n m}$
4. $(a b)^{n}=a^{n} b^{n}$
5. $\quad\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad b \neq 0$

Integer Exponents (1-7)

6. $\quad a^{0}=1$ if $a \neq 0$ and 0^{0} is undefined
7. $a^{-n}=\frac{1}{a^{n}} \quad a \neq 0$

Rational Exponents (1-9)

8. $\quad a^{\frac{1}{n}}=\sqrt[n]{a} \quad$ if n is odd, $a^{\frac{1}{n}}$ always exists
but if n is even, $a^{\frac{1}{n}}$ is only defined if $a \geq 0$
9. Suppose that $m \neq 1$.

$$
a^{\frac{m}{n}}=\left\{\begin{array}{cc}
\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m} & \text { if } a \geq 0 \\
\text { undefined } & \text { if } a<0
\end{array}\right.
$$

