Sample Problems

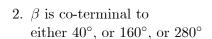
- 1. I am thinking of an angle α . If twice α is co-terminal to 100° , does that mean that α is co-terminal to 50° ?
- 2. Three times an angle β is co-terminal to 120°. Then β is co-terminal to what angle?
- 3. Consider the equation $\sin 2x = \frac{1}{2}$.
 - a) Solve the equation and present all solutions in degrees.
 - b) Find all solutions of the equation that fall between 0° and 360°.
 - c) Draw a picture of the solutions between 0° and 360° .
- 4. Consider the equation $\cos 3x = -\frac{\sqrt{3}}{2}$.
 - a) Find all solutions for the equation.
 - b) Find all solutions for the equation that fall between 0° and 360°. Present these angles in degrees.
 - c) Draw a picture of the solutions between 0° and 360°.
- 5. Consider the equation $\tan 5x = -1$.
 - a) Find all solutions for the equation. Present your answer in degrees.
 - b) Find all solutions for the equation. Present your answer in radians.
 - c) Find all solutions for the equation that fall between 0° and 360°.
 - d) Draw a picture of the solutions between 0° and 360°.
- 6. a) Solve the equation $-\sin 5x = \cos 10x$
 - b) List all solutions (in degrees) that fall between 0° and 360°.

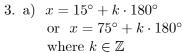
Practice Problems

- 1. Consider the equation $\sin 3x = -\frac{\sqrt{3}}{2}$.
 - a) Solve the equation. Present all solutions in degrees.
 - b) Solve the equation. Present all solutions in radians.
 - c) List all solutions between 0° and 360°.
 - d) Draw a picture of the solutions between 0° and $360^\circ.$
- 2. Find the exact value of all solutions for each of the following equations. Present your answer in radians.
 - a) $\tan 6x = -\frac{1}{\sqrt{3}}$
- b) $\sin 3x = \cos 3x$
- c) $\sin 4x = -1$
- 3. List all solutions of the equation $\sin 3x = -\frac{1}{2}$ that are between 0° and 360°.

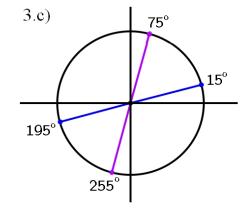
Sample Problems - Answers

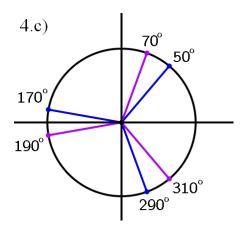
1. Not necessarily. α is co-terminal to either 50° or to 230°.



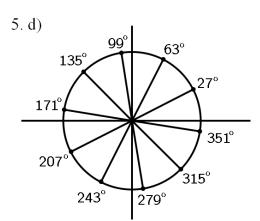


- b) 15°, 75°, 195°, and 255°
- 4. a) in degrees: $x = \pm 50^{\circ} + k \cdot 120^{\circ}$, where $k \in \mathbb{Z}$ in radians: $x = \pm \frac{5\pi}{18} + k \frac{2\pi}{3}$, $k \in \mathbb{Z}$
 - b) 50°, 70°, 170°, 190°, 290°, 310°





- 5. a) $x = -9^{\circ} + k \cdot 36^{\circ}$ where $k \in \mathbb{Z}$
 - b) $x = -\frac{\pi}{20} + k\frac{\pi}{5}$ $k \in \mathbb{Z}$
 - c) 27°, 63°, 99°, 135°, 171°, 207°, 243°, 279°, 315°, and 351°

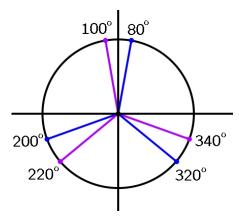


- 6. a) in degrees: $x = -6^{\circ} + k \cdot 72^{\circ}$ or $x = -25^{\circ} + k \cdot 72^{\circ}$ or $x = -18^{\circ} + k \cdot 72^{\circ}$ where $k \in \mathbb{Z}$ in radians: $x = -\frac{\pi}{30} + k \cdot \frac{2\pi}{5}$ or $x = -\frac{5\pi}{36} + k \cdot \frac{2\pi}{5}$ or $x = -\frac{\pi}{10} + k \cdot \frac{2\pi}{5}$ where $k \in \mathbb{Z}$ b) $47^{\circ}, 54^{\circ}, 66^{\circ}, 119^{\circ}, 126^{\circ}, 138^{\circ}, 191^{\circ}, 198^{\circ}, 210^{\circ}, 263^{\circ}, 270^{\circ}, 282^{\circ}, 335^{\circ}, 342^{\circ}, 354^{\circ}$
- © Hidegkuti, Powell, 2009

Practice Problems - Answers

- 1. a) $x = -20^{\circ} + k \cdot 120^{\circ}$ or $x = -40^{\circ} + k \cdot 120^{\circ}$ where $k \in \mathbb{Z}$
 - b) $x = -\frac{\pi}{9} + k \cdot \frac{2\pi}{3}$ or $x = -\frac{2\pi}{9} + k \cdot \frac{2\pi}{3}$ where $k \in \mathbb{Z}$
 - c) 80° , 100° , 200° , 220° , 320° , 340°

d)



- 2. a) $-\frac{\pi}{36} + k\frac{\pi}{6}$ where $k \in \mathbb{Z}$ b) $\frac{\pi}{12} + k\frac{\pi}{3}$, $k \in \mathbb{Z}$ c) $-\frac{\pi}{8} + k\frac{\pi}{2}$, $k \in \mathbb{Z}$

 $3. 70^{\circ}, 110^{\circ}, 190^{\circ}, 230^{\circ}, 310^{\circ}, 350^{\circ}$

Sample Problems - Solutions

1. I am thinking of an angle α . If twice α is co-terminal to 100°, does that mean that α is co-terminal to 50°? Solution: Not necessarily. Let us express that twice α is co-terminal to 100°. Two angles are co-terminal when they differ by a multiple of 360°:

$$2\alpha = 100^{\circ} + k \cdot 360^{\circ}$$
 where k is an integer divide by 2
 $\alpha = 50^{\circ} + k \cdot 180^{\circ}$

Let us investigate what angles we obtained with the expression $50^{\circ} + k \cdot 180^{\circ}$.

If k = 0, then $\alpha = 50^{\circ} + 0 \cdot 180^{\circ} = 50^{\circ}$.

If k = 1, then $\alpha = 50^{\circ} + 1 \cdot 180^{\circ} = 230^{\circ}$.

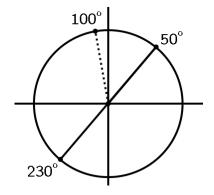
If k=2, then $\alpha=50^{\circ}+2\cdot180^{\circ}=410^{\circ}$ - co-terminal to 50° .

If k = 3, then $\alpha = 50^{\circ} + 3 \cdot 180^{\circ} = 590^{\circ}$ - co-terminal to 230°.

and so on, all such values are co-terminal to either 50° or to 230°.

Could α be 230°? If α is 230°, then twice α is 460° which is indeed co-terminal to 100° since 460° = 100° + 360°.

So the answer is that α is either co-terminal to 50° or to 230°. These two angles are not co-terminal, they differ by 180°. But if we double them both, the difference between them becomes 360° - so their doubles are co-terminal.



2. Three times an angle β is co-terminal to 120°. Then β is co-terminal to what angle? Solution: We state that three times β is co-terminal to 90° and divide both sides by 3.

$$3\beta = 120^{\circ} + k \cdot 360^{\circ}$$
 where k is an integer $\beta = 40^{\circ} + k \cdot 120^{\circ}$

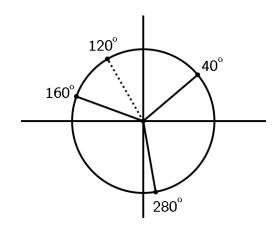
When k = 0, then $\beta = 40^{\circ}$.

When k = 1, then $\beta = 160^{\circ}$.

When k = 2, then $\beta = 280^{\circ}$.

When k = 3, then $\beta = 400^{\circ}$ - co-terminal to 40° .

When k = 4, then $\beta = 520^{\circ}$ - co-terminal to 160° .



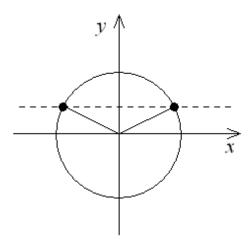
And so on, all other values will produce angles coterminal with one of the angles above. So our answer is that β is co-terminal to either 40°, or 160°, or 280°.

Does our answer make sense? We could argue that if two angles differ by 120°, then after multiplying both by 3, the difference becomes 360° - so they become co-terminal.

- 3. Consider the equation $\sin 2x = \frac{1}{2}$.
 - a) Solve the equation and present all solutions in degrees.

Solution: We will first solve for 2x.

$$\sin 2x = \frac{1}{2}$$



$$2x = 30^{\circ} + k \cdot 360^{\circ}$$

$$2x = 150^{\circ} + k \cdot 360^{\circ}$$
 where $k \in \mathbb{Z}$

where
$$k \in \mathbb{Z}$$

Next we solve for x in both equations by dividing both sides by 2.

$$x = 15^{\circ} + k \cdot 180^{\circ}$$

$$x = 75^{\circ} + k \cdot 180^{\circ}$$
 where $k \in \mathbb{Z}$

where
$$k \in \mathbb{Z}$$

b) Find all solutions of the equation that fall between 0° and 360°.

In this case, the picture above contains all these angles. To obtain these angles, we need to consider all suitable integer values of k in the expressions $x = 15^{\circ} + k \cdot 180^{\circ}$ and $x = 75^{\circ} + k \cdot 180^{\circ}$. First consider $x = 15^{\circ} + k \cdot 180^{\circ}$.

k	-1	0	1	2	3	4	5
$x = 15^{\circ} + k \cdot 180^{\circ}$	-165°	15°	195°	375°	555°	735°	915°

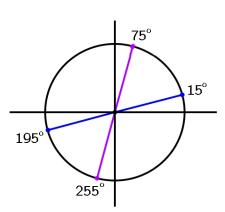
From all these values, 15° and 195° fall between 0° and 360° . Similarly, we consider $x = 75^{\circ} + k \cdot 180^{\circ}$

k	-1	0	1	2	3	4	5
$x = 15^{\circ} + k \cdot 180^{\circ}$	-105°	75°	255°	435°	615°	795°	975°

From all these values, 75° and 255° fall between 0° and 360°. So the final answer is 15°, 75°, 195°, and 255°.

c) Draw a picture of the solutions between 0° and 360°.

Solution: The first group, $x = 15^{\circ} + k \cdot 180^{\circ}$ (k integer) produces angles that are co-terminal with 15° or 195°. The second group, $x = 75^{\circ} + k \cdot 180^{\circ}$ (k integer) produces angles that are co-terminal with 75° or 255°.



- 4. Consider the equation $\cos 3x = -\frac{\sqrt{3}}{2}$.
 - a) Find all solutions for the equation.

Solution: We first solve for 3x.

$$\cos 3x = -\frac{\sqrt{3}}{2}$$

$$3x = \pm 150^{\circ} + k \cdot 360^{\circ} \text{ where } k \in \mathbb{Z} \qquad \text{divide by 3}$$

We now solve for x by dividing both sides by 3.

$$x = \pm 50^{\circ} + k \cdot 120^{\circ}$$
 where k is an integer

Finally, we convert the answer to radians

$$x = \pm 50^{\circ} \left(\frac{\pi}{180^{\circ}}\right) + k \cdot 120^{\circ} \left(\frac{\pi}{180^{\circ}}\right) \text{ where } k \text{ is an integer}$$

$$x = \pm \frac{5\pi}{18} + k \cdot \frac{2\pi}{3} \text{ where } k \text{ is an integer}.$$

b) Find all solutions for the equation that fall between 0° and 360°. Present these angles in degrees.

Solution: Consider the general solution, $x = \pm 50^{\circ} + k \cdot 120^{\circ}$ where k is an integer. To obtain these angles, we need to consider all suitable integer values of k in the expressions $x = 50^{\circ} + k \cdot 120^{\circ}$ and $x = -50^{\circ} + k \cdot 120^{\circ}$. First consider $x = 50^{\circ} + k \cdot 120^{\circ}$.

k	-1	0	1	2	3	4	5
$x = 50^{\circ} + k \cdot 120^{\circ}$	-70°	50°	170°	290°	410°	530°	650°

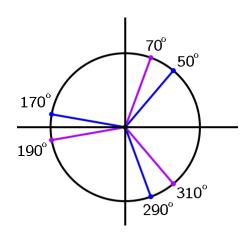
From all these values, 50° , 170° , and 290° fall between 0° and 360° . Similarly, we consider $x = -50^{\circ} + k \cdot 120^{\circ}$.

k	-1	0	1	2	3	4	5
$x = -50^{\circ} + k \cdot 120^{\circ}$	-170°	-50°	70°	190°	310°	430°	550°

From all these values, 70° , 190° and 310° fall between 0° and 360° . So the final answer is 50° , 70° , 170° , 190° , 290° and 310° .

c) Draw a picture of the solutions between 0° and 360°.

The group $x = 50^{\circ} + k \cdot 120^{\circ}$ (k integer) produces 50°, 170°, and 290° and the group $x = -50^{\circ} + k \cdot 120^{\circ}$ (k integer) produces 70°, 190° and 310°.



- 5. Consider the equation $\tan 5x = -1$.
 - a) Find all solutions for the equation. Present your answer in degrees.

Solution: We first solve for 5x. Recall that the period of tangent is π and not 2π .

$$\tan 5x = -1$$

 $5x = -45^{\circ} + k \cdot 180^{\circ}$ where $k \in \mathbb{Z}$ divide by 5
 $x = -9^{\circ} + k \cdot 36^{\circ}$ where $k \in \mathbb{Z}$

b) Find all solutions for the equation. Present your answer in radians.

Solution: We could just convert the answer from part a). Or, we can solve the equation in radians.

$$\tan 5x = -1$$

$$5x = -\frac{\pi}{4} + k\pi \quad \text{where } k \in \mathbb{Z}$$

$$x = -\frac{\pi}{20} + k\frac{\pi}{5} \qquad k \in \mathbb{Z}$$
divide by 5

c) Find all solutions for the equation that fall between 0° and 360°.

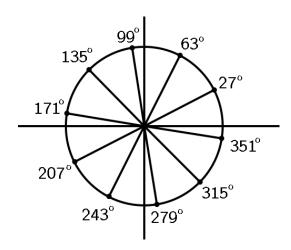
Solution: Substitute values into k starting with zero, and stopping once the solutions fall beyond 360° .

	k	0	1	2	3	4	5	6	7	8	9	10	11
a	x (rad)	$-\frac{\pi}{20}$	$\frac{3\pi}{20}$	$\frac{7\pi}{20}$	$\frac{11\pi}{20}$	$\frac{15\pi}{20}$	$\frac{19\pi}{20}$	$\frac{23\pi}{20}$	$\frac{27\pi}{20}$	$\frac{31\pi}{20}$	$\frac{35\pi}{20}$	$\frac{39\pi}{20}$	$\frac{43\pi}{20}$
3	$x (\deg)$	-9°	27°	63°	99°	135°	171°	207°	243°	279°	315°	351°	387°

So the solutions are: 27°, 63°, 99°, 135°, 171°, 207°, 243°, 279°, 315°, and 351°.

d) Draw a picture of the solutions between 0° and $360^{\circ}.$

Solution:



- 6. a) Solve the equation $-\sin 5x = \cos 10x$
 - b) List all solutions (in degrees) that fall between 0° and 360°.

Solution: Let us notice that 10 is twice 5 and so the double angle formula for cosine might be used. Let us denote 5x by B.

$$-\sin B = \cos 2B$$

We will use the double-angle formula for cosine. This formula has three forms, we will use the one that expresses things in terms of sine.

$$-\sin B = 1 - 2\sin^2 B$$

The equation is quadratic in $\sin B$. We solve for $\sin B$.

$$2\sin^2 B - \sin B - 1 = 0$$

$$(2\sin B + 1)(\sin B - 1) = 0$$

$$\sin B = -\frac{1}{2} \quad \text{or} \quad \sin B = 1$$

We now solve for B.

$$\sin B = -\frac{1}{2} \qquad \qquad \text{or} \qquad \qquad \sin B = 1$$

$$B=-30^{\circ}+k\cdot360^{\circ}$$
 or $B=-90^{\circ}+k\cdot360^{\circ}$ where $k\in\mathbb{Z}$ $B=-150^{\circ}+k\cdot360^{\circ}$

Recall that B = 5x.

$$5x = -30^{\circ} + k \cdot 360^{\circ}$$
 or $5x = -90^{\circ} + k \cdot 360^{\circ}$ where $k \in \mathbb{Z}$
 $5x = -150^{\circ} + k \cdot 360^{\circ}$

We solve for x by dividing both sides by 5.

$$x = -6^{\circ} + k \cdot 72^{\circ}$$
 or $x = -18^{\circ} + k \cdot 72^{\circ}$ where $k \in \mathbb{Z}$
 $x = -25^{\circ} + k \cdot 72^{\circ}$

b) List all solutions (in degrees) that fall between 0° and 360°.

Solution: we start with the expression $-6^{\circ} + k \cdot 72^{\circ}$ (where $k \in \mathbb{Z}$) and substitute k = 0, 1, 2, 3, and 4. We obtain the angles

$$-6^{\circ}, 66^{\circ}, 138^{\circ}, 210^{\circ}, 282^{\circ}$$

Since -6° does not belong into the desired interval (between 0° and 360°), we need to replace that with a co-terminal angle that does. We can either add 360° to -6° or use k=5 in the expression $-6^{\circ} + k \cdot 72^{\circ}$. Either way, we obtain 354° and so the list is

$$66^{\circ}, 138^{\circ}, 210^{\circ}, 282^{\circ}, 354^{\circ}$$

We apply the same method to the expressions $-25^{\circ} + k \cdot 72^{\circ}$ and obtain

$$-25^{\circ}, 47^{\circ}, 119^{\circ}, 191^{\circ}, 263^{\circ}$$
 and replace -25° with 335°

we apply the same method to the expression $-18^{\circ} + k \cdot 72^{\circ}$ and obtain

$$-18^{\circ}, 54^{\circ}, 126^{\circ}, 198^{\circ}, 270^{\circ}$$
 and replace -18° with 342°

So the complete list of all solutions between 0° and 360° is

$$47^{\circ}, 54^{\circ}, 66^{\circ}, 119^{\circ}, 126^{\circ}, 138^{\circ}, 191^{\circ}, 198^{\circ}, 210^{\circ}, 263^{\circ}, 270^{\circ}, 282^{\circ}, 335^{\circ}, 342^{\circ}, 354^{\circ}$$

For more documents like this, visit our page at https://teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or comments to mhidegkuti@ccc.edu.