Sample Problems

1. Let $\underline{u}=\underline{i}-2 \underline{j}$ and $\underline{v}=2 \underline{i}+\underline{j}$. Compute each of the following.
a) $\underline{u}+\underline{v}$
b) $2 \underline{u}-\underline{v}$
c) $3 \underline{u}-5 \underline{v}$
d) $\underline{u} \cdot \underline{v}$
e) $\underline{u} \cdot(\underline{u}+\underline{v})$
f) Find M and N so that $M \underline{u}+N \underline{v}=\underline{i}$
2. An object is held by two ropes as shown on the picture below. Find the forces F_{1} and F_{2} in the rope if the object weighs 200 N , and it is at rest.

3. Compute the angle between the vectors $\underline{a}=2 \underline{i}+3 \underline{j}$ and $\underline{b}=3 \underline{i}-5 \underline{j}$.
4. Prove that if the dot product of two non-zero vectors are zero, then they are perpendicular.
5. Use the dot product to prove that the vectors $\underline{a}=3 \underline{i}-6 \underline{j}$ and $\underline{b}=10 \underline{i}+5 \underline{j}$ are perpendicular.
6. A rhombus is a paralelogram with four equal sides. Prove that the two diagonals in a rhombus are perpendicular.

Practice Problems

1. Let $\underline{a}=-3 \underline{i}+2 \underline{j}$ and $\underline{b}=5 \underline{i}-\underline{j}$. Compute each of the following.
a) $\underline{a}-\underline{b}$
b) $3 \underline{a}-2 \underline{b}$
c) $|\underline{a}|+|\underline{b}|$
d) $|\underline{a}+\underline{b}|$
e) $\underline{a} \cdot \underline{b}$
f) $(\underline{a}+\underline{b}) \cdot(\underline{b}-\underline{a})$
g) Find M and N so that $M \underline{a}+N \underline{b}=\underline{i}+\underline{j}$
2. An object is held by two ropes as shown on the picture below. Find the forces F_{1} and F_{2} in the rope if the object weighs 100 N , and it is at rest.

3. Compute the angle between the vectors $\underline{x}=2 \underline{i}-5 \underline{j}$ and $\underline{b}=\underline{i}+3 \underline{j}$.

Sample Problems - Answers

1.) a) $3 \underline{i}-\underline{j}$
b) $-5 \underline{j}$
c) $-7 \underline{i}-11 \underline{j}$
d) 0
e) 5
f) $M=\frac{1}{5}, N=\frac{2}{5}$
2.) $F_{1} \approx 55.08590 \mathrm{~N}$
$F_{2} \approx 174.344680 \mathrm{~N}$
3.) 115.34615°
4.) see solutions
5.) see solutions
6.) see solutions

Practice Problems - Answers

1.) a) $-8 \underline{i}+3 \underline{j}$
b) $-19 \underline{i}+8 \underline{j}$
c) $\sqrt{13}+\sqrt{26}$
g) $M=\frac{6}{7}, N=\frac{5}{7}$
2.) 78.8011 N and 61.56615 N
3.) 139.7636417°
d) $\sqrt{5}$
e) -17
f) 13

Sample Problems - Solutions

1. Let $\underline{u}=\underline{i}-2 \underline{j}$ and $\underline{v}=2 \underline{i}+\underline{j}$. Compute each of the following.
a) $\underline{u}+\underline{v}=(\underline{i}-2 \underline{j})+(2 \underline{i}+\underline{j})=3 \underline{i}-\underline{j}$
b) $2 \underline{u}-\underline{v}=2(\underline{i}-2 \underline{j})-(2 \underline{i}+\underline{j})=2 \underline{i}+4 \underline{j}-2 \underline{i}-\underline{j}=-5 \underline{j}$
c) $3 \underline{u}-5 \underline{v}=3(\underline{i}-2 \underline{j})-5(2 \underline{i}+\underline{j})=3 \underline{i}-6 \underline{j}-10 \underline{i}-5 \underline{j}=-7 \underline{i}-11 \underline{j}$
d) $\underline{u} \cdot \underline{v}=(\underline{i}-2 \underline{j}) \cdot(2 \underline{i}+\underline{j})=1 \cdot 2+(-2) \cdot 1=2-2=0$
e) $\underline{u} \cdot(\underline{u}+\underline{v})=(\underline{i}-2 \underline{j}) \cdot(3 \underline{i}-\underline{j})=1 \cdot 3+(-2)(-1)=3+2=5$
f) Find M and N so that $M \underline{u}+N \underline{v}=\underline{i}$

$$
\begin{aligned}
M \underline{u}+N \underline{v} & =\underline{i} \\
M(\underline{i}-2 \underline{j})+N(2 \underline{i}+\underline{j}) & =\underline{i} \\
M \underline{i}-2 M \underline{j}+2 N \underline{i}+N \underline{j} & =\underline{i} \\
M \underline{i}+2 N \underline{i}-2 M \underline{j}+N \underline{j} & =\underline{i} \\
(M+2 N) \underline{i}+(-2 M+N) \underline{j} & =1 \underline{i}+0 \underline{j} \quad \Longrightarrow \quad M+2 N=1 \quad \text { and } \quad-2 M+N=0
\end{aligned}
$$

This is a linear system of equations that we can solve for M and N, and obtain $M=\frac{1}{5}$ and $N=\frac{2}{5}$.
2. An object is held by two ropes as shown on the picture below. Find the forces F_{1} and F_{2} in the rope if the object weighs 200 N , and it is at rest.

Solution: Let us first decompose forces F_{1} and F_{2} into horizontal and vertical components. Let us denote the weight of the object by F_{3}. Recall that upward and right are the positive directions.

Using right triangle trigonometry, we can easily find the length of horizontal and vertical components.

$$
\begin{array}{lll}
F_{1 x}=F_{1} \cos 35^{\circ} & F_{2 x}=F_{2} \cos 75^{\circ} \\
F_{1 y}=F_{1} \sin 35^{\circ} & F_{2 y}=F_{2} \sin 75^{\circ} \\
F_{3} y=200 \mathrm{~N} &
\end{array}
$$

Since the object is at rest, the sum of all forces must be zero F_{1}. This means that the sum of all horizontal and vertical components are both zero.

$$
\begin{aligned}
& \sum F_{x}=0 \quad \Longrightarrow \quad F_{1} \cos 35^{\circ}=F_{2} \cos 75^{\circ} \\
& \sum F_{y}=0 \quad \Longrightarrow \quad F_{1} \sin 35^{\circ}+F_{2} \sin 75^{\circ}=200 \mathrm{~N}
\end{aligned}
$$

Let us express F_{2} from the first equation. $\quad F_{2}=F_{1} \frac{\cos 35^{\circ}}{\cos 75^{\circ}}$. We substitute this into the second equation.

$$
\begin{aligned}
F_{1} \sin 35^{\circ}+F_{2} \sin 75^{\circ} & =200 \mathrm{~N} \\
F_{1} \sin 35^{\circ}+\left(F_{1} \frac{\cos 35^{\circ}}{\cos 75^{\circ}}\right) \sin 75^{\circ} & =200 \mathrm{~N} \\
F_{1} \sin 35^{\circ}+F_{1} \frac{\cos 35^{\circ} \sin 75^{\circ}}{\cos 75^{\circ}} & =200 \mathrm{~N} \\
F_{1}\left(\sin 35^{\circ}+\frac{\cos 35^{\circ} \sin 75^{\circ}}{\cos 75^{\circ}}\right) & =200 \mathrm{~N} \\
F_{1} & =\frac{200 \mathrm{~N}}{\sin 35^{\circ}+\frac{\cos 35^{\circ} \sin 75^{\circ}}{\cos 75^{\circ}} \approx 55.08590 \mathrm{~N}}
\end{aligned}
$$

We can now easily compute F_{2}.

$$
\begin{aligned}
F_{2} & =F_{1} \frac{\cos 35^{\circ}}{\cos 75^{\circ}}=\left(\frac{200 \mathrm{~N}}{\sin 35^{\circ}+\frac{\cos 35^{\circ} \sin 75^{\circ}}{\cos 75^{\circ}}}\right) \frac{\cos 35^{\circ}}{\cos 75^{\circ}}=\frac{200 \mathrm{~N} \cos 35^{\circ}}{\sin 35^{\circ} \cos 75^{\circ}+\cos 35^{\circ} \sin 75^{\circ}} \\
& \approx 174.344680 \mathrm{~N}
\end{aligned}
$$

We may notice that the denominator in F_{2} is very symmetrical, in a familiar way. Indeed,

$$
F_{2}=\frac{200 \mathrm{~N} \cos 35^{\circ}}{\sin 35^{\circ} \cos 75^{\circ}+\cos 35^{\circ} \sin 75^{\circ}}=\frac{200 \mathrm{~N} \cos 35^{\circ}}{\sin \left(35^{\circ}+75^{\circ}\right)}=\frac{200 \mathrm{~N} \cos 35^{\circ}}{\sin 110^{\circ}}
$$

The expression for F_{1} can also be simplified by multiplying numerator and denominator by $\cos 75^{\circ}$.

$$
\begin{aligned}
F_{1} & =\frac{200 \mathrm{~N}}{\sin 35^{\circ}+\frac{\cos 35^{\circ} \sin 75^{\circ}}{\cos 75^{\circ}} \cdot \frac{\cos 75^{\circ}}{\cos 75^{\circ}}=\frac{200 \mathrm{~N} \cos 75^{\circ}}{\sin 35^{\circ} \cos 75^{\circ}+\cos 35^{\circ} \sin 75^{\circ}}} \\
& =\frac{200 \mathrm{~N} \cos 75^{\circ}}{\sin \left(35^{\circ}+75^{\circ}\right)}=\frac{200 \mathrm{~N} \cos 75^{\circ}}{\sin 110^{\circ}}
\end{aligned}
$$

3. Compute the angle between the vectors $\underline{a}=2 \underline{i}+3 \underline{j}$ and $\underline{b}=3 \underline{i}-5 \underline{j}$.

Solution: Let γ denote the angle between \underline{a} and \underline{b}. We will compute the dot product of these vectors using two different methods. On one hand,

$$
\underline{a} \cdot \underline{b}=\underline{a} \cdot \underline{b}=2(3)+3(-5)=-9
$$

On the other hand,

$$
\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \gamma \quad \Longrightarrow \quad \cos \gamma=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}
$$

where $|\underline{a}|=\sqrt{2^{2}+3^{2}}=\sqrt{13}$ and $|\underline{b}|=\sqrt{3^{2}+5^{2}}=\sqrt{34}$ and so

$$
\cos \gamma=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}=\frac{-9}{\sqrt{13} \sqrt{34}}=-0.428086 \quad \Longrightarrow \quad \gamma=\arccos (-0.428086)=115.34615^{\circ}
$$

4. Prove that if the dot product of two non-zero vectors are zero, then they are perpendicular. Solution: Let \underline{a} and \underline{b} denote these vectors and let γ be the smaller angle formed between the angles. Clearly $0^{\circ} \leq \bar{\gamma} \leq 180^{\circ}$. Since these vectors are not zero, $|\underline{a}|>0$ and $|\underline{b}|>0$.

$$
\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \gamma=0
$$

Since neither $|\underline{a}|$ nor $|\underline{b}|$ can be zero, we have that $\cos \gamma=0$. Then $\gamma=90^{\circ}+k \cdot 180^{\circ}$, where k is an integer. The only possible value for $0^{\circ} \leq \gamma \leq 180^{\circ}$ is 90°.
5. Use the dot product to prove that the vectors $\underline{a}=3 \underline{i}-6 \underline{j}$ and $\underline{b}=10 \underline{i}+5 \underline{j}$ are perpendicular. Solution: $\underline{a} \cdot \underline{b}=(3 \underline{i}-6 \underline{j}) \cdot(10 \underline{i}+5 \underline{j})=3 \cdot 10+(-6) 5=30-30=0$. Since their dot product is zero, the vectors are perpendicular.
6. A rhombus is a four-sided polygon with four equal sides. Prove that the two diagonals in a rhombus are perpendicular.
Solution: Let P, Q, R, and S denote the vertices of the rhombus as shown below.

Let \underline{a} and \underline{b} denote the sides, with the orientation shown on the picture. Let $x>0$ denote the length of all sides. Thus $|\underline{a}|=|\underline{b}|=x$ Clearly

$$
\overrightarrow{P Q}=\overrightarrow{S R}=\underline{a}, \quad \overrightarrow{S P}=\overrightarrow{R Q}=\underline{b}, \quad \overrightarrow{S Q}=\underline{a}+\underline{b}, \quad \text { and } \quad \overrightarrow{R P}=\underline{b}-\underline{a}
$$

The dot product of the two diagonals is

$$
\begin{aligned}
\overrightarrow{S Q} \cdot \overrightarrow{R P} & =(\underline{a}+\underline{b}) \cdot(\underline{b}-\underline{a})=\underline{a} \cdot \underline{b}-\underline{a} \cdot \underline{a}+\underline{b} \cdot \underline{b}-\underline{b} \cdot \underline{a} \\
& =-\underline{a} \cdot \underline{a}+\underline{b} \cdot \underline{b}=-|\underline{a}||\underline{a}|+|\underline{\underline{a}}||\underline{b}|=-x^{2}+x^{2}=0
\end{aligned}
$$

Since their dot product is zero, the diagonals are perpendicular.

